留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微藻与塑料混合热解的热解特性和动力学研究

唐紫玥 陈伟 陈旭 陈应泉 胡强 成伟 杨海平 陈汉平

唐紫玥, 陈伟, 陈旭, 陈应泉, 胡强, 成伟, 杨海平, 陈汉平. 微藻与塑料混合热解的热解特性和动力学研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1145-1154. doi: 10.19906/j.cnki.JFCT.2023008
引用本文: 唐紫玥, 陈伟, 陈旭, 陈应泉, 胡强, 成伟, 杨海平, 陈汉平. 微藻与塑料混合热解的热解特性和动力学研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1145-1154. doi: 10.19906/j.cnki.JFCT.2023008
TANG Zi-yue, CHEN Wei, CHEN Xu, CHEN Ying-quan, HU Qiang, CHENG Wei, YANG Hai-ping, CHEN Han-ping. Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1145-1154. doi: 10.19906/j.cnki.JFCT.2023008
Citation: TANG Zi-yue, CHEN Wei, CHEN Xu, CHEN Ying-quan, HU Qiang, CHENG Wei, YANG Hai-ping, CHEN Han-ping. Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1145-1154. doi: 10.19906/j.cnki.JFCT.2023008

微藻与塑料混合热解的热解特性和动力学研究

doi: 10.19906/j.cnki.JFCT.2023008
基金项目: 国家自然科学基金杰出青年项目(52125601)和国家重点研发计划项目 (2018YFB1501403)资助
详细信息
    通讯作者:

    Tel: 027-87542417-8211, E-mail: yhping2002@163.com

  • 中图分类号: TK6

Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics

Funds: The project was supported by the National Natural Science Foundation of China Outstanding Youth Program (52125601) and National Key Research and Development Program (2018YFB1501403)
  • 摘要: 本研究利用TG-FTIR研究了微藻和聚乙烯(PE)、聚苯乙烯(PS)和聚丙烯(PP)混合热解特性,探讨了塑料添加比及塑料结构对热解失重和挥发分释放特性以及动力学的影响。微藻与塑料混合热解存在交互作用,使塑料的热解温度升高,并抑制焦炭形成,其中,PE能有效地减少残余物产率,而PS混合热解时其热解温度明显升高。并且微藻与塑料混合热解能降低热解过程中的平均活化能,且在较低比例塑料添加时作用较强。此外,微藻与聚乙烯混合会促进CO2的释放以及聚乙烯断键生成–CH3和C=C–H。微藻与聚丙烯混合却抑制CO2的释放,加剧了聚丙烯生成芳烃C–H。而微藻与聚苯乙烯混合会轻微促进C=O和NH3生成,并加剧微藻的氢转移和聚苯乙烯苯环断裂释放–CH3
  • FIG. 2580.  FIG. 2580.

    FIG. 2580.  FIG. 2580.

    图  1  微藻与塑料混合热解的TG曲线(a)、(c)、(e)和DTG曲线(b)、(d)、(f)

    Figure  1  TG curves and DTG curves of co-pyrolysis of microalgae and plastics

    图  2  共热解过程中TG失重与实验计算结果的偏差

    Figure  2  Deviation of TG weight loss between experimental and calculated results during co-pyrolysis process

    图  3  微藻(a)和塑料(b)热解挥发分主要特征峰随温度的变化

    Figure  3  Variation of the main volatiles of microalgae (a) and plastic (b) pyrolysis with temperature

    图  4  微藻和塑料混合热解时热解挥发分主要特征峰随温度的变化

    Figure  4  Variation of the main volatiles from co-pyrolysis of microalgae and plastic with temperature

    图  5  25%塑料添加比时热解挥发分FT-IR强度差值

    Figure  5  FT-IR intensity difference of pyrolytic volatiles at 25% plastic addition ratio

    图  6  微藻和塑料混合热解过程的平均活化能与理论值比

    Figure  6  Value of the Em.cal/ Em during co-pyrolysis of microalgae and plastics

    表  1  样品的工业分析和元素分析

    Table  1  Proximate, ultimate analysis of samples and biochemical constituents of microalgae

    SampleElemental analysis wd/%Proximate analysis wd/%
    CHNOMVFCA
    NS50.67.36.729.44.079.610.46.0
    PE84.315.50.2100.0
    PS91.47.51.197.22.8
    PP84.914.70.699.90.1
    : calculated by difference; : undetected
    下载: 导出CSV

    表  2  基于Doyle 和Coats-Redfern法计算的微藻和塑料混合热解的动力学参数

    Table  2  Kinetic parameters for the co-pyrolysis of microalgae and plastics via Doyle and Coats-Redfern method

    SampleTemperature /℃Coats-RedfernDoyleEm /
    (kJ·mol−1)
    E/(kJ·mol−1)A/sR2E/(kJ·mol−1)A/sR2
    NS216–35747.912.7×100.996954.313.4×1020.998737.04
    357–52616.152.0×10−20.985626.382.40.9964
    25%PE231–36141.423.60.988948.316.0×100.993566.21
    361–4589.651.7×10−30.975219.954.5×10−10.9943
    458–495149.762.3×1080.9862154.275.9×1080.9882
    50%PE252–34537.979.2×10−10.989245.111.8×100.9937130.79
    345–4427.144.1×10−40.976617.341.5×10−10.9968
    442–494205.481.9×10120.9796207.132.7×10120.9817
    75%PE285–34132.991.4×10−10.987240.623.80.9928208.20
    341–4327.592.2×10−40.978517.647.4×10−20.9962
    432–492267.094.3×10160.9862265.653.5×10160.9873
    PE432–486321.043.4×10200.9960316.751.9×10200.9963318.89
    25%PS221–35242.545.70.995149.268.9×100.997246.58
    352–41816.441.3×10−20.986926.041.40.9949
    418–47577.712.6×1030.979085.212.2×1040.9843
    50%PS244–33743.164.10.990949.916.4×100.994474.29
    337–41318.651.3×10−20.987427.971.10.9945
    413–472125.051.1×1070.9851130.133.5×1070.9876
    75%PS290–33739.315.8×10−10.996546.641.1×100.9979176.53
    337–39116.802.8×10−30.977626.042.7×100.9908
    391–448221.332.7×10140.9831221.392.8×10140.9846
    PS375–431267.912.0×10180.9919265.331.4×10180.9925266.62
    25%PP174–35347.901.5×100.998053.891.8×1020.998861.55
    354–45317.521.3×10−20.992027.171.30.9970
    465–504118.071.7×1060.9929123.976.6×1060.9941
    50%PP197–33749.371.3×100.997855.221.4×1020.9984124.06
    354–44215.654.7×10−30.992525.235.3×10−10.9971
    459–504179.674.7×10100.9912182.468.2×10100.9922
    75%PP229–33756.232.9×100.996361.632.4×1020.9976186.92
    342–42714.831.7×10−30.989924.312.1×10−10.9961
    449–498236.055.2×10140.9911235.985.3×10140.9918
    PP419–486321.749.5×10200.9932317.145.0×10200.9936319.44
    下载: 导出CSV
  • [1] CHEN X, LI S J, LIU Z H, CHEN Y Q, YANG H P, WANG X H, CHE Q F, CHEN W, CHEN H P. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO[J]. Bioresour Technol,2019,287:7.
    [2] ROSS, A B, P BILLER, M L KUBACKI, H LI, A LEA-LANGTON, J M JONES. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel,2010,89(9):2234−2243. doi: 10.1016/j.fuel.2010.01.025
    [3] LI F H, SRIKANTH C S, SANKAR B. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds[J]. Renewable Sustainable Energy Rev,2019,108:481−497. doi: 10.1016/j.rser.2019.03.026
    [4] BACH, QUANG-VU, CHEN W H. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review[J]. Bioresour Technol,2017,246:88−100. doi: 10.1016/j.biortech.2017.06.087
    [5] AYSU T, MAROTO-VALER M M, SANNA A. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis[J]. Bioresour Technol,2016,208:140−148. doi: 10.1016/j.biortech.2016.02.050
    [6] AZIZI K, MOSTAFA K M, HAMED A N. A review on bio-fuel production from microalgal biomass by using pyrolysis method[J]. Renewable Sustainable Energy Rev,2018,82:3046−3059. doi: 10.1016/j.rser.2017.10.033
    [7] 张泽, 赵洪君, 孟洁, 洪晨, 李益飞. 生物质的热解及生物油提质的研究进展[J]. 环境工程,2021,39(3):161−171. doi: 10.13205/j.hjgc.202103023

    ZHANG Ze, ZHAO Hong-Jun, MENG Jie, HONG Chen, LI Yi-Fei. Reseach progess of biomass pyrolysis and bio oil upgrading[J]. Environ Eng,2021,39(3):161−171. doi: 10.13205/j.hjgc.202103023
    [8] CAMPANELLA A, HAROLD M P. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts[J]. Biomass Bioenergy,2012,46:218−232. doi: 10.1016/j.biombioe.2012.08.023
    [9] 王文燕, 张光义, 孟辉波, 朱新宇, 张建岭, 许光文. 糠醛渣热解特性及热解挥发产物对其燃烧烟气原位控氮作用[J]. 化工学报,2021,72(11):5770−5778. doi: 10.11949/0438-1157.20211028

    WANG Wen-yan, ZHANG Guang-yi, MENG Hui-bo, ZHU Xin-yu, ZHANG Jian-ling, XU Guang-wen. Furfural residue pyrolysis characteristics and the effect of its pyrolysis products on in-situ control of NOx emission from its combustion flue gas[J]. CIESC J,2021,72(11):5770−5778. doi: 10.11949/0438-1157.20211028
    [10] NANDAKUMAR T, DWIVEDI U, PANT K K. KUMAR S, BALARAMAN E. Wheat straw/HDPE co-reaction synergy and enriched production of aromatics and light olefins via catalytic co-pyrolysis over Mn, Ni, and Zn metal modified HZSM-5[J]. Catal Today,2023,408:111−126.
    [11] TIAN F J, YU J L, MCKENZIE L J, J HAYASHI, LI C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: A comparative study of coal and biomass[J]. Energy Fuels,2007,21(2):517−521. doi: 10.1021/ef060415r
    [12] RANJEET K M, KAUSTUBHA M. Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals[J]. Carbon Res Conv,2020,3:145−155. doi: 10.1016/j.crcon.2020.11.001
    [13] 毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004

    (MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. J Fuel Chem and Technol,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004
    [14] RAHMAN, M H, P R BHOI, A SAHA, V PATIL, S ADHIKARI. Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid[J]. Energy,2021,225:120231.
    [15] CHEN W M, SHI S K, CHEN M Z, ZHOU X Y. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons[J]. Waste Manage,2017,67:155−162. doi: 10.1016/j.wasman.2017.05.032
    [16] YUAN H R, FAN H G, SHAN R, HE M Y, GU J, CHEN Y. Study of synergistic effects during co-pyrolysis of cellulose and high-density polyethylene at various ratios[J]. Energy Conv Manag,2018,157:517−526. doi: 10.1016/j.enconman.2017.12.038
    [17] TANG Z Y, CHEN W, HU J H, LI S Q, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresour Technol,2020,311:123502. doi: 10.1016/j.biortech.2020.123502
    [18] DUAN P G, JIN B B, XU Y P, WANG F. Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol[J]. Chem Eng J, 2015. 269(Supplement C): 262−271.
    [19] XU S N, CAO B, B B UZOEJINWA, E A ODEY, WANG S, SHANG H, LI C H, HU Y M, WANG Q, J N NWAKAIRE. Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics[J]. Process Saf Environ Protect,2020,137:34−48. doi: 10.1016/j.psep.2020.02.001
    [20] WU X Y, WU Y L, WU K J, CHEN Y, HU H S, YANG M D. Study on pyrolytic kinetics and behavior: The co-pyrolysis of microalgae and polypropylene[J]. Bioresour Technol,2015,192:522−528. doi: 10.1016/j.biortech.2015.06.029
    [21] CHEN R, ZHANG S, YANG X, LI G, ZHOU H, LI Q, ZHANG Y. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics[J]. Waste Manage,2021,126:331−339. doi: 10.1016/j.wasman.2021.03.001
    [22] TANG Z Y, CHEN W, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects[J]. Bioresour Technol,2019,274:145−152. doi: 10.1016/j.biortech.2018.11.083
    [23] ABOUL-ENEIN, ATEYYA A, FATHI S S, MOHAMED A B. Co-production of hydrogen and carbon nanomaterials using NiCu/SBA15 catalysts by pyrolysis of a wax by-product: Effect of Ni-Cu loading on the catalytic activity[J]. Int J Hydrog Energy,2019,44(59):31104−31120. doi: 10.1016/j.ijhydene.2019.10.042
    [24] HU Q, TANG Z Y, YAO D D, YANG H P, SHAO J A, CHEN H P. Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes[J]. J Clean Prod,2020,260:121102.
    [25] WANG X, SHENG L L, YANG X Y. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp[J]. Bioresour Technol,2017,229:119−125. doi: 10.1016/j.biortech.2017.01.018
    [26] WANG X, TANG X H, YANG X Y. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction[J]. Energy Conv Manag,2017,140:203−210. doi: 10.1016/j.enconman.2017.02.058
    [27] CHEN H P, XIE Y P, CHEN W, XIA M W, LI K X, CHEN Z Q, CHEN Y Q, YANG H P. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conv Manag,2019,196:320−329. doi: 10.1016/j.enconman.2019.06.010
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  191
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-29
  • 修回日期:  2022-12-07
  • 录用日期:  2022-12-27
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回