留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄MXene纳米片碱性电催化析氢反应性能

段小卉 刘堰 吴实 陈熙 杨言言 余钟亮

段小卉, 刘堰, 吴实, 陈熙, 杨言言, 余钟亮. 超薄MXene纳米片碱性电催化析氢反应性能[J]. 燃料化学学报(中英文), 2023, 51(9): 1306-1312. doi: 10.19906/j.cnki.JFCT.2023010
引用本文: 段小卉, 刘堰, 吴实, 陈熙, 杨言言, 余钟亮. 超薄MXene纳米片碱性电催化析氢反应性能[J]. 燃料化学学报(中英文), 2023, 51(9): 1306-1312. doi: 10.19906/j.cnki.JFCT.2023010
DUAN Xiao-hui, LIU Yan, WU Shi, CHEN Xi, YANG Yan-yan, YU Zhong-liang. Ultrathin MXene nanosheets for electrocatalytic hydrogen evolution under alkaline condition[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1306-1312. doi: 10.19906/j.cnki.JFCT.2023010
Citation: DUAN Xiao-hui, LIU Yan, WU Shi, CHEN Xi, YANG Yan-yan, YU Zhong-liang. Ultrathin MXene nanosheets for electrocatalytic hydrogen evolution under alkaline condition[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1306-1312. doi: 10.19906/j.cnki.JFCT.2023010

超薄MXene纳米片碱性电催化析氢反应性能

doi: 10.19906/j.cnki.JFCT.2023010
基金项目: 国家自然科学基金(22169017),江西省自然科学基金(20224BAB203026),上饶市研发投入后补助项目(SKB2021002),江西省教育厅项目(GJJ2201823,GJJ201709,GJJ201706,GJJ211709)和上饶市基础研究项目(2020L001,2021F009)资助
详细信息
    通讯作者:

    Tel: 18734861009, 18734861008; E-mail: yangyy0927@163.com

    yzh2401@126.com

  • 中图分类号: O646

Ultrathin MXene nanosheets for electrocatalytic hydrogen evolution under alkaline condition

Funds: The project was supported by National Natural Science Foundation (22169017), Jiangxi Provincial Natural Science Foundation (20224BAB203026), the Subsidy Project after R&D Investment of Shangrao City (SKB2021002), the Science and Technology Research Project of Jiangxi Provincial Education Department (GJJ2201823, GJJ201709, GJJ201706, GJJ211709) and Shangrao Natural Science Foundation (2020L001, 2021F009)
  • 摘要: 以MAX (Ti3AlC2)为原料,依次采用蚀刻、剥层的方法制备了MXene(Ti3C2Tx)及超薄层MXene纳米片(MXene nanosheets,MXene-NS,即Ti3C2Tx-NS)。通过扫描电子显微镜(Scanning Electron Microscope,SEM)、X射线衍射(X-Ray Diffraction,XRD)及X射线光电子能谱仪(X-Ray Photoelectron Spectroscopy,XPS)表征了MXene-NS的形貌、结构及组成。采用电化学方法对比了MAX、MXene以及MXene-NS的电催化析氢(Hydrogen Evolution Reaction, HER)性能。结果表明,与MAX和MXene相比,MXene-NS在1 mol/L KOH溶液中具有最低的过电位(190 mV @ −10 mA/cm2)、最小的塔菲尔斜率(168 mV/dec)、最小的电荷转移电阻以及最大的电活性面积。此外,在多电流阶跃下,MXene-NS也展示了良好的电位响应性。经过长周期的稳定性测试,MXene-NS的极化曲线并未出现明显衰减,显示了优异的析氢稳定性。这些结果表明,MXene的剥层可以有效提高材料的电催化性能,MXene-NS具有替代贵金属催化剂的潜质。
  • FIG. 2674.  FIG. 2674.

    FIG. 2674.  FIG. 2674.

    图  1  MAX (a)、MXene (b)及MXene-NS (c)的SEM照片

    Figure  1  SEM images of MAX (a), MXene (b) and MXene-NS (c)

    图  2  MAX、MXene和MXene-NS的XRD谱图(a)(插图为002、004晶面的放大图)以及MXene-NS的XPS全谱图(b)

    Figure  2  XRD patterns of MAX, MXene, MXene-NS (a), and XPS survey spectra of MXene-NS (b)

    图  3  MAX、MXene和MXene-NS在1 mol/L KOH溶液中的极化曲线(a)、对应的塔菲尔斜率(b)、电化学阻抗谱(c)及多电流阶跃曲线(d)

    Figure  3  Polarization curves (a), Tafel plots (b), Nyquist plots (c) and multi-step chronopotentiometric curves at different current densities (d) of MAX, MXene, MXene-NS recorded in 1 mol/L KOH solution

    图  4  MXene-NS (a)、MXene (b)和MAX (c)在1 mol/L KOH溶液中的CV曲线及其双电层电容(d)

    Figure  4  CV curves of MXene-NS (a), MXene (b), and MAX (c) measured with different scan rates (5 mV/s, 20 mV/s, 50 mV/s and 100 mV/s), and their current density difference plots (d) at 0.1 V (vs Hg/HgO) as a function of scan rates to calculate the double-layer capacitance value (Cdl) in 1 mol/L KOH solution

    图  5  MAX、MXene和MXene-NS在1 mol/L KOH溶液中的恒电流析氢E-t曲线 (a);MAX (b)、MXene (c)及MXene-NS (d)在恒电流析氢前后的极化曲线

    Figure  5  Chronopotentiometric curves at −10 mA/cm2 of MAX, MXene, MXene-NS (a), polarization curves of MAX (b), MXene (c) and MXene-NS (d) for HER before and after long-term durability test in 1 mol/L KOH solution

  • [1] XIE H, ZHAO Z, LIU T, WU Y, LAN C, JIANG W, ZHU L, WANG Y, YANG D, SHAO Z. A membrane-based seawater electrolyser for hydrogen generation[J]. Nature,2022,612:673−678.
    [2] 武美霞, 陈妍, 李森, 杨肖萌, 李经纬, 尚建鹏, 郭永, 李作鹏. 纳米非晶镍硼合金的合成及其碱性电催化析氢性能研究[J]. 燃料化学学报(中英文),2023,51(2):197−204.

    WU Mei-xia, CHEN Yan, LI Sen, YANG Xiao-meng, LI Jing-wei, SHANG Jian-peng, GUO Yong, LI Zuo-peng. Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions[J]. J Fuel Chem Technol,2023,51(2):197−204.
    [3] 梁珂明, 姜彬, 黄焱, 鲁萌萌, 王秋静. 碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究[J]. 燃料化学学报,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014

    LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. J Fuel Chem Technol,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014
    [4] YANG Y, LI C, MA X, LI S, LI X, DU X, HAO X, ABUDULA A, GUAN G. One-dimensional CoMoS4 nanorod arrays as an efficient electrocatalyst for hydrogen evolution reaction[J]. J Alloys Compd,2020,821:153245. doi: 10.1016/j.jallcom.2019.153245
    [5] LI X, DU X, MA X, WANG Z, HAO X, ABUDULA A, YOSHIDA A, GUAN G. CuO nanowire@Co3O4 ultrathin nanosheet core-shell arrays: an effective catalyst for oxygen evolution reaction[J]. Electrochim Acta,2017,250:77−83. doi: 10.1016/j.electacta.2017.08.063
    [6] JIANG W, ZOU X, DU H, GAN L, XU C, KANG F, DUAN W, LI J. Universal descriptor for large-scale screening of high-performance MXene-based materials for energy storage and conversion[J]. Chem Mater,2018,30(8):2687−2693. doi: 10.1021/acs.chemmater.8b00156
    [7] LING C, SHI L, OUYANG Y, WANG J. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor[J]. Chem Mater,2016,28(24):9026−9032. doi: 10.1021/acs.chemmater.6b03972
    [8] LI Y, LUO Y, ZHANG Z, YU Q, LI C, ZHANG Q, ZHENG Z, LIU H, LIU B, DOU S. Implanting Ru nanoclusters into N-doped graphene for efficient alkaline hydrogen evolution[J]. Carbon,2021,183:362−367. doi: 10.1016/j.carbon.2021.07.039
    [9] LI P, ZHU J, HANDOKO A, ZHANG R, WANG H, LEGUT D, WEN X, FU Z, SEH Z, ZHANG Q. High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification[J]. J Mater Chem A,2018,6(10):4271−4278. doi: 10.1039/C8TA00173A
    [10] YANG X, GAO N, ZHOU S, ZHAO J. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics[J]. Phys Chem Chem Phys,2018,20(29):19390−19397. doi: 10.1039/C8CP02635A
    [11] ZOU H, HE B, KUANG P, YU J, FAN K. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin MXene nanosheets for electrocatalytic oxygen evolution[J]. ACS Appl Mater Interfaces,2018,10(26):22311−22319. doi: 10.1021/acsami.8b06272
    [12] YU M, ZHOU S, WANG Z, ZHAO J, QIU J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene[J]. Nano Energy,2018,44:181−190. doi: 10.1016/j.nanoen.2017.12.003
    [13] YUAN W, CHENG L, AN Y, WU H, YAO N, FAN X, GUO X. MXene nanofibers as highly active catalysts for hydrogen evolution reaction[J]. ACS Sustainable Chem Eng,2018,6(7):8976−8982. doi: 10.1021/acssuschemeng.8b01348
    [14] LIU Y, ZHU X, PAN L. Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications[J]. Small,2018,14(51):1803632. doi: 10.1002/smll.201803632
    [15] LI S, TUO P, XIE J, ZHANG X, XU J, BAO J, PAN B, XIE Y. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen revolution[J]. Nano Energy,2018,47:512−518. doi: 10.1016/j.nanoen.2018.03.022
    [16] HANDOKO A, FREDRICKSON K, ANASORI B, CONVEY K, JOHNSON L, GOGOTSI Y, VOJVODIC A, SHE Z. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity[J]. ACS Appl Energy Mater,2018,1(1):173−180. doi: 10.1021/acsaem.7b00054
    [17] BAT-ERDENE M, BATMUNKH M, SAINBILEG B, HAYASHI M, BATI A, QIN J, ZHAO H, ZHONG Y, SHAPTER J. Highly dispersed Ru nanoparticles on boron-doped Ti3C2Tx (MXene) nanosheets for synergistic enhancement of electrocatalytic hydrogen evolution[J]. Small,2021,17(38):2102218. doi: 10.1002/smll.202102218
    [18] TRAN M, SCHAFER T, SHAHRAEI A, DURRSCHNABEL M, MOLINA-LUNA L, KRAMM U, BIRKEL C. Adding a new member to the MXene family: Synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx[J]. ACS Appl Energy Mater,2018,1(8):3908−3914. doi: 10.1021/acsaem.8b00652
    [19] CHENG Y, DAI J, ZHANG Y, SONG Y. Transition metal modification and carbon vacancy promoted Cr2CO2 (MXenes): A new opportunity for a highly active catalyst for the hydrogen evolution reaction[J]. J Mater Chem A,2018,6(42):20956−20965. doi: 10.1039/C8TA07749E
    [20] GAO G, O’MULLANE A, DU A. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction[J]. ACS Catal,2017,7(1):494−500. doi: 10.1021/acscatal.6b02754
    [21] YOON Y, TIWARI A, LEE M, CHOI M, SONG W, IM J, ZYUNG T, JUNG H, LEE S, JEON S, AN K. Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution[J]. J Mater Chem A,2018,6(42):20869−20877. doi: 10.1039/C8TA08197B
    [22] ZHAO L, DONG B, LI S, ZHOU L, LAI L, WANG Z, ZHAO S, HAN M, GAO K, LU M, XIE X, CHEN B, LIU Z, WANG X, ZHANG H, LI H, LIU J, ZHANG H, HUANG X, HUANG W. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution[J]. ACS Nano,2017,11(6):5800−5807. doi: 10.1021/acsnano.7b01409
    [23] LIU Y, ZHANG J, ZHANG X, LI Y, WANG J. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane[J]. ACS Appl Mater Interfaces,2016,8(31):20352−20363. doi: 10.1021/acsami.6b04800
    [24] LI S, SIRISOMBOONCHAI S, YOSHIDA A, AN X, HAO X, ABUDULA A, GUAN G. Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density[J]. J Mater Chem A,2018,6(39):19221−19230. doi: 10.1039/C8TA08223E
    [25] ZHANG J, ZHAO Y, GUO X, CHEN C, DONG C, LIU R, HAN C, LI Y, GOGOTSI Y, WANG G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nat Catal,2018,1(12):985−992. doi: 10.1038/s41929-018-0195-1
  • 加载中
图(6)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  63
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-01-13
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回