留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳酸钾和高铁酸钾催化热解中药渣固废的对比实验

吴江苏 李焱冰 于志浩 郎林 刘华财 阴秀丽 吴创之

吴江苏, 李焱冰, 于志浩, 郎林, 刘华财, 阴秀丽, 吴创之. 碳酸钾和高铁酸钾催化热解中药渣固废的对比实验[J]. 燃料化学学报(中英文), 2023, 51(8): 1114-1125. doi: 10.19906/j.cnki.JFCT.2023011
引用本文: 吴江苏, 李焱冰, 于志浩, 郎林, 刘华财, 阴秀丽, 吴创之. 碳酸钾和高铁酸钾催化热解中药渣固废的对比实验[J]. 燃料化学学报(中英文), 2023, 51(8): 1114-1125. doi: 10.19906/j.cnki.JFCT.2023011
WU Jiang-su, LI Yan-bing, YU Zhi-hao, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Comparative experiments on the catalytic pyrolysis of herb residue by K2CO3 and K2FeO4[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1114-1125. doi: 10.19906/j.cnki.JFCT.2023011
Citation: WU Jiang-su, LI Yan-bing, YU Zhi-hao, LANG Lin, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Comparative experiments on the catalytic pyrolysis of herb residue by K2CO3 and K2FeO4[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1114-1125. doi: 10.19906/j.cnki.JFCT.2023011

碳酸钾和高铁酸钾催化热解中药渣固废的对比实验

doi: 10.19906/j.cnki.JFCT.2023011
基金项目: 国家重点研发计划(2019YFB1503901),广东省自然科学基金(2020A1515011568)和广东省科技计划(2021A0505030054) 资助
详细信息
    通讯作者:

    E-mail: langlin@ms.giec.ac.cn

    wucz@ms.giec.ac.cn

  • 中图分类号: TK6

Comparative experiments on the catalytic pyrolysis of herb residue by K2CO3 and K2FeO4

Funds: The project was supported by the National Key R&D Program of China (2019YFB1503901), Natural Science Foundation of Guangdong Province (2020A1515011568)、and the Science and Technology Program of Guangdong (2021A0505030054)
  • 摘要: 以中药渣为原料,通过浸渍法分别负载高铁酸钾(PF)和碳酸钾(PC)催化剂,利用热重分析仪、在线质谱和固定床反应器研究了PC和PF对中药渣催化热解过程的影响机制。结果表明,PC和PF均降低了中药渣的热解反应温度,强化了水蒸气重整反应,显著提升了热解气产率和H2含量。PC将药渣热解活化能由206.9 kJ/mol降至149.3 kJ/mol,PF的自身热分解反应,则小幅增加热解活化能至218.7 kJ/mol。300 ℃时,PC和PF有效促进了中药渣的低温热解反应,气体收率分别增加了83.3%和69.3%;500 ℃时,催化剂促进了H2的生成,将热解气的H2/CO比由0分别提升至1.29和1.92;700 ℃时,PC、PF能大幅降低液相收率,提高气体产物的H2/CO,PF效果更为明显,液相收率降低了30.9%,H2/CO提高了38.5%。但PF在热解过程中会分解释放氧气,使得NO排放量增加。
  • FIG. 2577.  FIG. 2577.

    FIG. 2577.  FIG. 2577.

    图  1  热解实验装置的流程示意图

    Figure  1  Schematic diagram of the experimental device for pyrolysis

    图  2  负载不同催化剂中药渣样品的 TG、DTG曲线和转化率(150−750 ℃)

    Figure  2  TG, DTG curves and conversion rate of herb samples with different catalyst loadings at 10 ℃/min

    图  3  K2CO3 、K2FeO4的 TG和DTG/MS曲线

    Figure  3  TG and DTG/MS curves of K2CO3 and K2FeO4

    图  4  中药渣热解活化能的变化

    Figure  4  Variation of the thermal activation energy of herb samples

    图  5  中药渣热解的气相产物析出

    Figure  5  Precipitation law of gas-phase products in the pyrolysis of herb samples

    图  6  中药渣热解的三相产物收率分布

    Figure  6  Distribution of pyrolysis products of herb samples

    图  7  中药渣热解的气相产物组分分布

    Figure  7  Distribution of compositions of pyrolysis syngas of herb samples

    图  8  中药渣热解的气相产物产率对比

    Figure  8  Comparison of gas-phase product yields in the pyrolysis of herb samples

    图  9  中药渣热解半焦的BET分析和孔径分布

    Figure  9  Surface area and pore size distribution of pyrolysis char of herb samples

    图  10  中药渣热解半焦的拉曼光谱谱图

    Figure  10  Raman results of pyrolysis char of herb samples

    表  1  中药渣样品的纤维素、半纤维素和酸洗木质素含量测试

    Table  1  Test results for cellulose, hemicellulose and acid-washed lignin content of herb samples

    Content w/%
    cellulosehemicelluloseacid-washed lignin
    No.135.7318.1718.45
    No.234.6718.5420.84
    No.336.4117.2517.73
    Average35.6017.9919.01
    下载: 导出CSV

    表  2  中药渣样品的工业分析、元素分析和ICP测试

    Table  2  Proximate, ultimate and ICP analyses of herb samples

    Proximate analyses wd/%Ultimate analyses wd/%ICP /%
    AVFCCHNO*KFe
    HL4.6177.118.29 46.65.850.8542.090.32110.0595
    HPC19.7565.6714.5841.375.220.7332.938.51590.0523
    HPF20.3163.8515.8440.324.860.8833.635.55292.3066
    *: by difference(GB/T 31391—2015),d:dry-based biomass
    下载: 导出CSV

    表  3  负载不同催化剂的中药渣催化热解特征参数

    Table  3  Characteristic parameters of herb samples with different catalyst loadings determined by TG

    Ti /℃Tmax /℃(dm/dt)max /(%·min−1)Ii/10−7∆massA /%∆massB /%∆massC /%∆massD /%
    HL255331−5.5815.130.2682.7212.454.57
    HPC231275−5.7125.000.3273.1312.2714.28
    HPF229281−5.1213.980.4775.5412.5911.40
    PF-1157194−1.040.3324.8432.06
    PF-2575635−0.8790.018420.0343.07
    PC0000
    PF-1:100−400 ℃,PF-2:400−900 ℃,∆mass:mass loss in each phase
    下载: 导出CSV
  • [1] DAI Y J, WAN S Y, GONG S S, LIU J C, LI F, KOU J P. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19[J]. Chin J Nat Medicines,2020,18(12):881−889. doi: 10.1016/S1875-5364(20)60031-0
    [2] GUO F Q, DONG Y P, ZHANG T H, DONG L, GUO C W, RAO Z H. Experimental study on herb residue gasification in an air-blown circulating fluidized bed gasifier[J]. Ind Eng Chem Res,2014,53(34):13264−13273. doi: 10.1021/ie5021238
    [3] 张世鑫, 陈明光, 吴陈亮, 史磊, 李楠, 李建漳, 黄建萍, 吴献铭, 王庆文, 叶萌. 生物质利用技术进展[J]. 中国资源综合利用,2019,37(4):79−85. doi: 10.3969/j.issn.1008-9500.2019.04.024

    ZHANG Shi-xin, CHEN Ming-guang, WU Chen-liang, SHI Lei, LI Nan, LI Jian-zhang, HUANG Jian-ping, WU Xian-ming, WANG Qing-wen, YE Meng. Advances in biomass utihzation technology[J]. China Resour Compr Util,2019,37(4):79−85. doi: 10.3969/j.issn.1008-9500.2019.04.024
    [4] 吴创之, 周肇秋, 阴秀丽, 易维明. 我国生物质能源发展现状与思考[J]. 农业机械学报,2009,40(1):91−99.

    WU Chuang-zhi, ZHOU Zhao-qiu, YIN Xiu-li, Yi Wei-ming. Current status of biomass energy development in china[J]. China Resour Compr Util,2009,40(1):91−99.
    [5] HUANG C, LI Z X, WU Y, HUANG Z Y, HU Y, GAO J. Treatment and bioresources utilization of traditional Chinese medicinal herb residues: Recent technological advances and industrial prospect[J]. J Environ Manage,2021,299:113607. doi: 10.1016/j.jenvman.2021.113607
    [6] 霍丽丽, 田宜水, 孟海波, 赵立欣, 姚宗路. 生物质固体成型燃料全生命周期评价[J]. 太阳能学报,2011,32(12):1875−1880.

    HUO Li-li, TIAN Yi-shui, MENG Hai-bo, ZHAO Li-xin, YAO Zong-lu. Full life cycle assessment of biomass solid molding fuels[J]. Acta Energ Sol Sin,2011,32(12):1875−1880.
    [7] LAIRD D A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality[J]. Agron J,2008,100(1):178−181. doi: 10.2134/agronj2007.0161
    [8] LIU S S, WU G, SYED-HASSAN S S A, LI B, HU X, ZHOU J B, HUANG Y, ZHANG S, ZHANG H. Catalytic pyrolysis of pine wood over char-supported Fe: Bio-oil upgrading and catalyst regeneration by CO2/H2O[J]. Fuel,2022,307:121778. doi: 10.1016/j.fuel.2021.121778
    [9] VIRGINIE M, COURSON C, KIENNEMANN A. Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst[J]. Cr Chim,2010,13(10):1319−1325. doi: 10.1016/j.crci.2010.03.022
    [10] WANG T P, PENG L, AI Y N, ZHANG R H, LU Q. Pyrolytic behaviors of decocting residues of Rhodiola rosea[J]. J Anal Appl Pyrolysis,2018,129:61−65. doi: 10.1016/j.jaap.2017.12.003
    [11] YIN L, LENG E W, FANG Y, LIU T F, GONG X, ZHOU J B. Effects of KCl, KOH and K2CO3 on the pyrolysis of Cβ-O type lignin-related polymers[J]. J Anal Appl Pyrolsis,2020,147:104809. doi: 10.1016/j.jaap.2020.104809
    [12] CHEN H P, TANG Z Y, LIU B, CHEN W, HU J H, CHEN Y Q, YANG H P. The new insight about mechanism of the influence of K2CO3 on cellulose pyrolysis[J]. Fuel,2021,295:120617. doi: 10.1016/j.fuel.2021.120617
    [13] ZHOU J B, BAI B, CHEN G Y, MA L L, YAN B B. Thermogravimetric characteristics and kinetics of sawdust pyrolysis catalyzed by potassium salt during the process of hydrogen preparation[J]. Int J Hydrogen Energy,2019,44(30):15863−15870. doi: 10.1016/j.ijhydene.2019.01.060
    [14] YIN P F, WANG W L, RAO H B, WANG G T, SUN M M, JIANG Y Y, WANG Y Y, ZOU P, WANG X X, ZHAO Q B, LU Z W. One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction[J]. Int J Hydrogen Energy,2020,45(30):15100−15111. doi: 10.1016/j.ijhydene.2020.03.250
    [15] YAO S Y, ZHANG Z H, WANG Y M, LIU Z, LI Z. Simple one-pot strategy for converting biowaste into valuable graphitized hierarchically porous biochar for high-efficiency capacitive storage[J]. J Energy Storage,2021,44:103259. doi: 10.1016/j.est.2021.103259
    [16] HOU L, HU Z, WANG X, QIANG L, ZHOU Y, LV L, LI S. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors[J]. J Colloid Interface Sci,2019,540:88−96. doi: 10.1016/j.jcis.2018.12.029
    [17] HE J J, ZHANG D Y, WANG Y L, ZHANG J W, YANG B B, SHI H, WANG K J, WANG Y. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability[J]. Appl Surf Sci,2020,515:146020. doi: 10.1016/j.apsusc.2020.146020
    [18] WANG J, CUI H, XIE G, LIU B, CAO G, XING D. Co-treatment of potassium ferrate and peroxymonosulfate enhances the decomposition of the cotton straw and cow manure mixture[J]. Sci Total Environ,2020,724:138321. doi: 10.1016/j.scitotenv.2020.138321
    [19] GUO F Q, LIANG S, JIA X P, PENG K Y, JIANG X C, QIAN L. One-step synthesis of biochar-supported potassium-iron catalyst for catalytic cracking of biomass pyrolysis tar[J]. Int J Hydrogen Energy,2020,45(33):16398−16408. doi: 10.1016/j.ijhydene.2020.04.084
    [20] LI K, MA S, XU S, FU H, LI Z, LI Y, LIU S, DU J. The mechanism changes during bisphenol A degradation in three iron functionalized biochar/peroxymonosulfate systems: The crucial roles of iron contents and graphitized carbon layers[J]. J Hazard Mater, 2021, 404(Pt A): 124145.
    [21] LIN Y, LIAO Y F, YU Z S, FANG S W, LIN Y S, FAN Y L, PENG X W, MA X Q. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA-FTIR analysis[J]. Energy Convers Manage,2016,118:345−352. doi: 10.1016/j.enconman.2016.04.004
    [22] ZHU H Y, LANG L, FANG G, NA D Y, YIN X L, YU X, WU C Z, BRIDGWATER A V. Thermogravimetric characteristics and kinetics of herb residues catalyzed by potassium carbonate[J]. J Anal Appl Pyrolysis,2021,156:105170. doi: 10.1016/j.jaap.2021.105170
    [23] LV D Z, XU M H, LIU X W, ZHAN Z H, LI Z Y, YAO H. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification[J]. Fuel Process Technol,2010,91(8):903−909. doi: 10.1016/j.fuproc.2009.09.014
    [24] LIN X N, KONG L S, CAI H Z, ZHANG Q F, BI D M, YI W M. Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS[J]. Fuel Process Technol,2019,191:71−78. doi: 10.1016/j.fuproc.2019.03.015
    [25] NIZAMUDDIN S, SHRESTHA S, ATHAR S, ALI B S, SIDDIQUI M A. A critical analysis on palm kernel shell from oil palm industry as a feedstock for solid char production[J]. Rev Chem Eng,2016,32(5):489−505.
    [26] FU X, ZHONG Z, XIAO G, LI R. Comparative study on pyrolysis characteristics and dynamics of grass biomass[J]. Trans Chin Soc Agric Eng,2009,25(1):199−202.
    [27] SHEN Y, ZHANG N, ZHANG S. Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons[J]. Energy,2020,190:116431. doi: 10.1016/j.energy.2019.116431
    [28] FANG S W, YU Z S, LIN Y S, HU S C, LIAO Y F, MA X Q. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste[J]. Energy Convers Manage,2015,101:626−631. doi: 10.1016/j.enconman.2015.06.026
    [29] WANG M R, WANG L Y, ZHANG X Y, CHENG X X, WANG Z Q. Influence mechanism of trace K element on NO adsorption of coal-based carbon materials at low temperature[J]. J Fuel Chem Technol,2022,50(7):884−895. doi: 10.1016/S1872-5813(21)60199-8
    [30] IRMAK S, KURTULUŞ M, HASANOĞLU A, ERBATUR O. Gasification efficiencies of cellulose, hemicellulose and lignin fractions of biomass in aqueous media by using Pt on activated carbon catalyst[J]. Biomass Bioenergy,2013,49:102−108. doi: 10.1016/j.biombioe.2012.12.016
    [31] BANKS S W, NOWAKOWSKI D J, BRIDGWATER A V. Impact of potassium and phosphorus in biomass on the properties of fast pyrolysis bio-oil[J]. Energy Fuels,2016,30(10):8009−8018. doi: 10.1021/acs.energyfuels.6b01044
    [32] HWANG H, OH S, CHO T S, CHOI I G, CHOI J W. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products[J]. Bioresour Technol,2013,150:359−366. doi: 10.1016/j.biortech.2013.09.132
    [33] CARVALHO W S, CUNHA I F, PEREIRA M S, ATAÍDE C H. Thermal decomposition profile and product selectivity of analytical pyrolysis of sweet sorghum bagasse: Effect of addition of inorganic salts[J]. Ind Crop Prod,2015,74:372−380. doi: 10.1016/j.indcrop.2015.05.020
    [34] WANG X J, CHEN Q, ZHU H L, CHEN X L, YU G S. In-situ study on structure evolution and gasification reactivity of biomass char with K and Ca catalysts at carbon dioxide atmosphere [J]. Carbon Resour Convers, 2022, 6: 27−33.
    [35] BARAJ E, CIAHOTNý K, HLINČíK T. The water gas shift reaction: Catalysts and reaction mechanism[J]. Fuel,2021,288:119817. doi: 10.1016/j.fuel.2020.119817
    [36] WANG W, LEMAIRE R, BENSAKHRIA A, LUART D. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass[J]. J Anal Appl Pyrolysis,2022,163:105479. doi: 10.1016/j.jaap.2022.105479
    [37] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat Nanotechnol,2013,8(4):235−246. doi: 10.1038/nnano.2013.46
    [38] GONG Y, LI D, LUO C, FU Q, PAN C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chem,2017,19(17):4132−4140. doi: 10.1039/C7GC01681F
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  203
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2022-12-29
  • 录用日期:  2023-02-02
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回