留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭CO2吸附剂的制备和改性研究进展

李经宽 曲孟青 张圆圆 杨凤玲 程芳琴

李经宽, 曲孟青, 张圆圆, 杨凤玲, 程芳琴. 生物炭CO2吸附剂的制备和改性研究进展[J]. 燃料化学学报(中英文), 2023, 51(7): 882-895. doi: 10.19906/j.cnki.JFCT.2023012
引用本文: 李经宽, 曲孟青, 张圆圆, 杨凤玲, 程芳琴. 生物炭CO2吸附剂的制备和改性研究进展[J]. 燃料化学学报(中英文), 2023, 51(7): 882-895. doi: 10.19906/j.cnki.JFCT.2023012
LI Jing-kuan, QU Meng-qing, ZHANG Yuan-yuan, YANG Feng-ling, CHENG Fang-qin. Progress on the preparation and modification of biochar CO2 adsorbent[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 882-895. doi: 10.19906/j.cnki.JFCT.2023012
Citation: LI Jing-kuan, QU Meng-qing, ZHANG Yuan-yuan, YANG Feng-ling, CHENG Fang-qin. Progress on the preparation and modification of biochar CO2 adsorbent[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 882-895. doi: 10.19906/j.cnki.JFCT.2023012

生物炭CO2吸附剂的制备和改性研究进展

doi: 10.19906/j.cnki.JFCT.2023012
基金项目: 国家自然科学基金(21908138, U1910215)和山西省科技合作交流专项(202104041101014)资助
详细信息
    通讯作者:

    E-mail: yuanyuanzhang@sxu.edu.cn

  • 中图分类号: X705

Progress on the preparation and modification of biochar CO2 adsorbent

Funds: The project was supported by the Nation Natural Science Foundation of China (21908138, U1910215), Special Project of Science and Technology Cooperation and Exchange of Shanxi Province (202104041101014)
  • 摘要: CO2作为主要的温室气体,对全球生态系统造成了巨大影响。生物炭因其原料来源广泛、制备成本低廉等原因,被认为是一种具有成本效益的CO2吸附剂,但原始生物炭的结构特性和表面化学性质较差,所以需要对其理化性质进行调整。本综述从生物炭的理化性质出发,对生物炭的制备及改性方法进行了系统的分析,并在前人研究的基础上,对生物炭吸附CO2的机理进行了总结。着重分析了改性过程中生物炭孔隙结构和表面化学性质等的变化对其CO2吸附性能的影响。此外,还探讨了生物炭作为CO2吸附剂在大规模CO2捕集中可能存在的问题,以及未来研究的主要方向,旨在为改性生物炭CO2吸附剂的制备及应用提供理论依据。
  • FIG. 2462.  FIG. 2462.

    FIG. 2462.  FIG. 2462.

    图  1  生物质热解机理示意图

    Figure  1  Mechanism of biomass pyrolysis

    图  2  常规加热和微波加热的温度分布

    Figure  2  Temperature distribution of conventional heating and microwave heating

    图  3  生物炭气体活化机理示意图

    Figure  3  Mechanism of activation using gas

    图  4  生物炭KOH改性机理示意图

    Figure  4  Mechanism of activation using KOH

    图  5  生物炭氨基改性机理示意图

    Figure  5  Mechanism of activation using amino

    图  6  生物炭金属浸渍机理示意图

    Figure  6  Mechanism of metal impregnation

    图  7  生物炭吸附CO2的可能机理示意图

    Figure  7  Simplified scheme of possible mechanisms involved in CO2 adsorption on biochar

    表  1  不同生物质热化学转化技术的操作参数和产物分布

    Table  1  Operating parameters and product distribution of different thermochemical conversion technologies

    ModeConditionsProportion/%
    temperature/℃heating rate/(℃·s−1)solidliquidgas
    Pyrolysis [4]slow pyrolysis300–7000.1–1.0353035
    fast pyrolysis600–100010.0–200.012>7013
    flash pyrolysis800–1000>1000.010–2550–7510–30
    Gasificationgasification agent>50060–30005–10
    non-gasification agent>50060–300028–30
    Hydrothermal carbonization150–375[5]44–9126–45<10
    −: not available
    下载: 导出CSV

    表  2  生物炭的元素组成和灰分含量

    Table  2  Elemental composition and ash content of biochar

    Biochar sampleTemperature/℃C/%H/%O/%N/%Ash/%Reference
    Strawcorn straw300–60057.71–77.301.24–2.8611.26–37.660.87–1.1310.11–23.40[20,21]
     wheat straw200–60046.52–74.460.89–4.792.97–31.100.28–25.457.02–37.95[2224]
     soybean straw60079.411.9010.381.606.71[25]
     rape straw65073.511.748.530.5513.77[26]
    Shellpeanut shell300–60060.56–68.191.64–4.289.14–27.791.08–9.83[24]
     rice husk77355.002.030.6826.19[27]
     walnut shell60082.992.2811.130.323.28[25]
    Woodsawdust75097.301.101.530.0721.39[28]
     charcoal600–90062.61–86.90.02–3.0811.56–16.910.40–0.751.32–19.71[2931]
     hickory45083.623.2411.460.39[32]
     pine60082.141.9611.730.483.69[25]
    Manurepig manure250–70025.20–44.301.12–3.854.83–18.402.05–4.0129.50–66.80[33,34]
     chicken manure400–75038.56–50.031.19–1.143.21–18.380.67–2.1533.87–53.88[35,36]
    Sludgesludge300–7009.80–39.700.47–4.101.12–10.451.38–7.1084.00[37]
    −: not available
    下载: 导出CSV

    表  3  不同类型生物炭的比表面积和孔径分布

    Table  3  Specific surface area and pore size distribution of different types of biochar

    Biochar sampleTemperature/℃Surface area/(m2·g−1)Total pore
    volume/(cm3·g−1)
    Average pore
    size/nm
    Reference
    Strawcorn straw300–7001.56–316.000.002–0.0071.54–37.66[21,48,49]
     wheat straw200–6001.72–521.290.0386–0.10322.31–18.63[23,50]
     rice straw300–7004.21–13.130.007–0.0261.54–13.38[49]
     rape straw450–65037.58–68.070.095–0.2613.93–9.17[26]
    Shellpeanut shell300–6001.63–355.700.0003–0.12063.53–53.56[51,52]
     rice husk300–10461.39–377.720.008–0.04942.69–3.82[27,53,54]
    Woodrhus vernicifera300–5502.38–229.430.0001–0.00614.56–50.00[55]
     charcoal300–6001.63–21.030.004367–0.0409610.72–17.79[56]
    Manurepig manure400–6005.17–10.560.0130–0.044012.36–16.38[57]
     cow dung300–7001.55–31.230.0026–0.02343.00–7.34[57]
    Sludgepharmaceutical sludge500–9009.46–264.050.014–0.3302.27–5.93[58]
     pharmaceutical sludge300–9004.00–67.600.0537–0.09863.74–3.84[59]
    下载: 导出CSV

    表  4  不同改性方法比较

    Table  4  Comparison of different modification methods

    Modification methodTemperatureCostWashing or notMaturity
    Physical modificationcarbon dioxidehigh (>700 ℃)highnomaturation
    steamhigh (500–800 ℃)lowernomaturation
    kall millinghighnodeveloping
    Chemical modificationKOHhigh (>760 ℃)higheryesmaturation
    NaOHlow (about 300 ℃)loweryesmaturation
    aminolowerhigheryesmaturation
    metallowerhigheryesmaturation
    −: not available
    下载: 导出CSV
  • [1] BIRCH E L. A review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change”[J]. J Am Plann Assoc,2014,80(2):184−185. doi: 10.1080/01944363.2014.954464
    [2] 刘清涛. PEI改性生物炭的制备及对CO2吸附性能的评价[J]. 环境科学学报,2021,41(3):932−939.

    LIU Qing-tao. Preparation of PEI-modified biochar and evaluation of its CO2 adsorption performance[J]. Acta Sci Circum,2021,41(3):932−939.
    [3] SHARMA A, PAREEK V, ZHANG D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies[J]. Renewable Sustainable Energy Rev,2015,50:1081−1096. doi: 10.1016/j.rser.2015.04.193
    [4] 盛竹, 邓兵杰, 孙洋, 范思辰, 李欣陽, 杨天华. 生物炭制备及其吸附应用研究进展[J]. 现代农业科技,2022,(9):133−140. doi: 10.3969/j.issn.1007-5739.2022.09.039

    SHENG Zhu, DENG Bing-jie, SUN Yang, FAN Si-chen, LI Xin-yang, YANG Tian-hua. Advances on Biochar Preparation and Its Adsorption Applications[J]. Mod Agr Sci Technol,2022,(9):133−140. doi: 10.3969/j.issn.1007-5739.2022.09.039
    [5] 吴艳姣, 李伟, 吴琼, 刘守新. 水热炭的制备、性质及应用[J]. 化学进展,2016,28(1):121−130. doi: 10.7536/PC150745

    WU Yan-jiao, LI Wei, WU Qiong, LIU Shou-xin. Preparation, properties and applications of hydrochar[J]. Chem Ind Eng Prog,2016,28(1):121−130. doi: 10.7536/PC150745
    [6] 任少云, 程红丹, 张伟平, 张成丽. 生物炭制备方法的研究进展[J]. 高师理科学刊,2017,37(8):74−76. doi: 10.3969/j.issn.1007-9831.2017.08.017

    REN Shao-yun, CHENG Hong-dan, ZHANG Wei-ping, ZHANG Cheng-li. Research progress on preparation method of biochar[J]. J Sci Teach Coll Univ,2017,37(8):74−76. doi: 10.3969/j.issn.1007-9831.2017.08.017
    [7] 邓淋, 俞倩倩. 莲杆基生物炭吸附CO2的性能研究[J]. 化工技术与开发,2021,50(4):42−45. doi: 10.3969/j.issn.1671-9905.2021.04.013

    DENG Lin, YU Qian-qian. Study on adsorption performance of sugarcane-based activated carbon[J]. Technol Dev Chem Ind,2021,50(4):42−45. doi: 10.3969/j.issn.1671-9905.2021.04.013
    [8] 杜晓佳. 生物质管式炉热解特性研究[D]. 北京: 北京化工大学, 2018.

    DU Xiao-jia. Study of biomass pyrolysis characteristics utilizing tube furnace reactor[D]. Beijing: Beijing University of Chemical Technology, 2018.
    [9] 郑庆福, 王永和, 孙月光, 牛鹤鹤, 周佳儒, 王志民, 赵吉. 不同物料和炭化方式制备生物炭结构性质的FTIR研究[J]. 光谱学与光谱分析,2014,34(4):962−966. doi: 10.3964/j.issn.1000-0593(2014)04-0962-05

    ZHENG Qing-fu, WANG Yong-he, SUN Yue-guang, NIU He-he, ZHOU Jia-ru, WANG Zhi-min, ZHAO Ji. FTIR study of the structural properties of biochar prepared by different materials and carbonization methods[J]. Spectsc Spect Anal,2014,34(4):962−966. doi: 10.3964/j.issn.1000-0593(2014)04-0962-05
    [10] 林帝出, 郭献军. 生物质裂解技术分析[J]. 再生资源与循环经济,2016,9(7):30−33. doi: 10.3969/j.issn.1674-0912.2016.07.007

    LIN Di-chu, GUO Xian-jun. Analysis of biomass pyrolysis technology[J]. Recyclable Resour Circular Economy,2016,9(7):30−33. doi: 10.3969/j.issn.1674-0912.2016.07.007
    [11] 吕贝贝, 张贵云, 张丽萍, 刘珍, 范巧兰, 姚众. 生物炭制备技术研究进展[J]. 河北农业科学,2019,23(5):95−98.

    LÜ Bei-bei, ZHANG Gui-yun, ZHANG Li-ping, LIU Zhen, FAN Qiao-lan, YAO ZHong. Research progress of biochar preparation technology[J]. J Hebei Agric Sci,2019,23(5):95−98.
    [12] 张彦军. 低阶煤对微波的介电响应及其微波热解特性研究[D]. 北京: 中国矿业大学(北京), 2018.

    ZHANG Yan-jun. Microware dielectric response and microwave pyrolysis characteristics of low-rank coal[D]. Beijing: China University of Mining and Technology(Beijing), 2018.
    [13] HUANG Y F, CHIUEH P T, SHIH C H, LO S L, SUN L P, ZHONG Y, QIU C S. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2[J]. Energy,2015,84:75−82. doi: 10.1016/j.energy.2015.02.026
    [14] WANG Q, LI H, CHEN L Q, HUANG X J. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon,2001,39(14):2211−2214. doi: 10.1016/S0008-6223(01)00040-9
    [15] WEI J, LIU Y T, LI J, ZHU Y H, YU H, PENG Y Z. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar[J]. Chemosphere,2019,236:124254−124298. doi: 10.1016/j.chemosphere.2019.06.224
    [16] 刘娟. 生物质废弃物的水热碳化试验研究[D]. 杭州: 浙江大学, 2016.

    LIU Juan. Hydrothermal carbonization of biomass wastes[D]. Hangzhou: Zhejiang University, 2016.
    [17] AMALINA F, RAZAK A S A, KRISHNAN S, ZULARISAM A W, NASRULLAH M. A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review[J]. Clean Mater,2022,3:100045−100062. doi: 10.1016/j.clema.2022.100045
    [18] 王建楠, 胡志超, 彭宝良, 王海鸥, 曹士峰. 我国生物质气化技术概况与发展[J]. 农机化研究,2010,32(1):198−201 + 205. doi: 10.3969/j.issn.1003-188X.2010.01.056

    WANG Jian-nan, HU Zhi-chao, PENG Bao-liang, WANG Hai-ou, CAO Shi-feng. General situation of biomass gasificationtechnology in China[J]. J Agr Mech Res,2010,32(1):198−201 + 205. doi: 10.3969/j.issn.1003-188X.2010.01.056
    [19] 张伟明, 修立群, 吴迪, 孙媛媛, 顾闻琦. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报,2021,47(1):1−18. doi: 10.3724/SP.J.1006.2021.02021

    ZHANG Wei-ming, XIU Li-qun, WU Di, SUN Yuan-yuan, GU Wen-qi. Review of biochar structure and physicochemical properties[J]. Acta Agron Sin,2021,47(1):1−18. doi: 10.3724/SP.J.1006.2021.02021
    [20] 钟金魁, 丁莉, 李柳, 李静, 郑博文, 谢欣卓. 玉米秸秆生物炭对铜的吸附及其影响因素[J]. 安全与环境学报, 2020, 20(5): 1862–1870.

    ZHONG Jin-kui, DING Li, LI Liu, LI Jing, ZHENG Bo-wen, XIE Xin-zhuo[J]. J Saf Environ, 2020, 20(5): 1862–1870.
    [21] WANG H, TENG H, WANG X, XU J, SHENG L. Physicochemical modification of corn straw biochar to improve performance and its application of constructed wetland substrate to treat city tail water[J]. J Environ Manage,2022,310:114758−114771. doi: 10.1016/j.jenvman.2022.114758
    [22] 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2017.

    WEI Si-ye. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2017.
    [23] 常西亮, 胡雪菲, 蒋煜峰, 孙航, 慕仲锋. 不同温度下小麦秸秆生物炭的制备及表征[J]. 环境科学与技术,2017,40(4):24−29.

    CHANG Xi-liang, HU Xue-fei, JIANG Yu-feng, SUN Hang, MU Zhong-feng. Biochar made from wheat straw: Preparation and characterization[J]. Environ Sci Technol,2017,40(4):24−29.
    [24] CHENG Y, CAI Z C, CHANG S X, WANG J, ZHANG J B. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem[J]. Biol Fert Soils,2012,48(8):941−946. doi: 10.1007/s00374-012-0687-0
    [25] CAO L Y, ZHANG X Y, XU Y, XIANG W, WANG R, DING F J, HONG P Z, GAO B. Straw and wood based biochar for CO2 capture: Adsorption performance and governing mechanisms[J]. Sep Purif Technol,2022,287:120592−120600. doi: 10.1016/j.seppur.2022.120592
    [26] 陈佼, 李晓媛, 李滨伶, 刘 欢, 刘钰洁, 陆一新. 油菜秸秆生物炭对水中氨氮的吸附性能及机理[J]. 安全与环境学报,2022,22:1−13.

    CHEN Jiao, LI Xiao-yuan, LI Bin-ling, LIU Huan, LIU Yu-jie, LU Yi-xin. Adsorption performance and mechanism of ammonia nitrogen in aqueous solution by rape straw biochar[J]. J Saf Environ,2022,22:1−13.
    [27] 李新欣. 稻壳生物炭吸附水中对硝基苯酚和硝基苯的研究[D]. 南京: 南京信息工程大学, 2022.

    LI Xin-xin. Study on adsorption of p-nitrophenol and nitrobenzene in water by rice husk biochar[D]. Nanjing: Nanjing University of Information Science & Technology, 2022
    [28] MADZAKI H, KARIMGHANI W A W AB, REBITANIM N Z, ALIAS A B. Carbon dioxide adsorption on sawdust biochar[J]. Procedia Eng,2016,148:718−725. doi: 10.1016/j.proeng.2016.06.591
    [29] ZHANG J J, LÜ F, LUO C H, SHAO L M, HE P J. Humification characterization of biochar and its potential as a composting amendment[J]. Journal of Environmental Sciences,2014,26(2):390−397. doi: 10.1016/S1001-0742(13)60421-0
    [30] 高海英, 陈心想, 张雯, 何绪生, 耿增超. 生物炭和生物炭基氮肥的理化特征及其作物肥效评价[J]. 西北农林科技大学学报(自然科学版),2013,41(4):69−78 + 85.

    GAO Hai-ying, CHEN Xin-xiang, ZHANG Wen, HE Xu-sheng, GENG Zeng-chao. Physicochemical properties and efficiencies of biochar and biochar-based nitrogenous fertilizer[J]. J Northwest A & F Univ(Nat Sci Ed),2013,41(4):69−78 + 85.
    [31] 刘玉学, 王耀锋, 吕豪豪, 陈庆飞, 陈义, 钟哲科, 杨生茂. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响[J]. 植物营养与肥料学报,2013,19(6):1438−1444. doi: 10.11674/zwyf.2013.0618

    LIU Yu-xue, WANG Yao-feng, LÜ Hao-hao, CHEN Qing-fei, CHEN Yi, ZHONG Zhe-ke, YANG Sheng-mao. Effects of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery( Brassica chinensis) and soil properties[J]. J Plant Resour Environ,2013,19(6):1438−1444. doi: 10.11674/zwyf.2013.0618
    [32] CREAMER A E, GAO B, ZHANG M. Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood[J]. Chem Eng J,2014,249:174−179. doi: 10.1016/j.cej.2014.03.105
    [33] 颜钰, 王子莹, 金洁, 邱梦怡, 韩兰芳, 孙可. 不同生物质来源和热解温度条件下制备的生物炭对菲的吸附行为[J]. 农业环境科学学报,2014,33(9):1810−1816. doi: 10.11654/jaes.2014.09.019

    YAN Yu, WANG Zi-ying, JIN Jie, QIU Meng-yi, HAN Lan-fang, SUN Ke. Phenanthrene adsorption on biochars produced from different biomass materials at two temperatures[J]. J Agro-Environ Sci,2014,33(9):1810−1816. doi: 10.11654/jaes.2014.09.019
    [34] 张鹏, 武健羽, 李力, 刘娅, 孙红文, 孙铁珩. 猪粪制备的生物炭对西维因的吸附与催化水解作用[J]. 农业环境科学学报,2012,31(2):416−421.

    ZHANG Peng, WU Jian-yu, LI Li, LIU Ya, SUN Hong-wen, SUN Tie-heng. Sorption and catalytic hydrolysis of carbaryl on pig-manure-derived biochars[J]. J Agro-Environ Sci,2012,31(2):416−421.
    [35] 胡菲菲, 何丕文. 不同热解温度制备的鸡粪生物炭对废水中磷的吸附[J]. 湖北农业科学,2014,53(8):1774−1778 + 1785. doi: 10.3969/j.issn.0439-8114.2014.08.012

    HU Fei-fei, HE Pi-wen. Phosphate adsorption in wastewater by bio-carbon prepared from pyrolysis of chicken manure at different temperature[J]. Hubei Agr Sci,2014,53(8):1774−1778 + 1785. doi: 10.3969/j.issn.0439-8114.2014.08.012
    [36] 侯艳伟, 曾月芬, 安增莉. 生物炭施用对污染红壤中重金属化学形态的影响[J]. 内蒙古大学学报(自然科学版),2011,42(4):460−466.

    HOU Yan-wei, ZENG Yue-fen, AN Zeng-li. Effects of the application of biochar on the chemical fraction of heavy metals in polluted red soil[J]. J Inner Mongolia Agr Univ (Nat Sci Ed),2011,42(4):460−466.
    [37] PAZ-FERREIRO J, GASCO G, GUTIERREZ B, MENDEZ A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil[J]. Bio Fert Soils,2012,48(5):511−517. doi: 10.1007/s00374-011-0644-3
    [38] 袁帅, 赵立欣, 孟海波, 沈玉君. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报,2016,22(5):1401−1417. doi: 10.11674/zwyf.14539

    YUAN Shuai, HAO Li-xin, MENG Hai-bo, SHEN Yu-jun. The main types of biochar and their properties and expectative researches[J]. Plant Nutr Fert Sci,2016,22(5):1401−1417. doi: 10.11674/zwyf.14539
    [39] YANG Z F, TIAN J R, YIN Z F, CUI C J, QIAN W Z, WEI F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review[J]. Carbon,2019,141:467−480. doi: 10.1016/j.carbon.2018.10.010
    [40] XIE Y Q, WANG L, LI H L, WESTHOLM L J, CARVALHO L, THORIN E, YU Z X, YU X H, SKREIBERG Ø. A critical review on production, modification and utilization of biochar[J]. J Anal Appl Pyrolysis,2022,161:105405.
    [41] HE M J, XIONG X N, WANG L, HOU D Y, BOLAN N S, OK S Y, RINKLEBE J, TSANG D C W. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils[J]. J Hazard Mater,2021,414:125378−125395. doi: 10.1016/j.jhazmat.2021.125378
    [42] LI L C, ZOU D S, XIAO Z H, ZENG X Y, ZHANG L Q, JIANG L B, WANG A D, GE D B, ZHANG G L, LIU F. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use[J]. J Clean Prod,2019,210:1324−1342. doi: 10.1016/j.jclepro.2018.11.087
    [43] LU L M, LI X C, MAHONEY M, ZHANG Z Q. Biomass materials for metallurgical applications[J]. Adv Mater Sci Eng,2018,2018:e7297136.
    [44] JELLALI S, LABAKI M, AZZAZ A A, AKROUT H, LIMOUSY L, JEGUIRIM M. Char and Carbon Materials Derived from Biomass[M]. Mulhouse: Elsevier, 2019, 229-290.
    [45] CREAMER A E, GAO B. Carbon-based adsorbents for postcombustion CO2 capture: A critical review[J]. Environ Sci Technol,2016,50(14):7276−7289. doi: 10.1021/acs.est.6b00627
    [46] ZHANG Z S, ZHOU J, XING W, XUE Q Z, YAN Z F, ZHUO S P, QIAO S Z. Critical role of small micropores in high CO2 uptake[J]. Phys Chem Chem Phys,2013,15(7):2523−2529. doi: 10.1039/c2cp44436d
    [47] CHIANG Y-C, JUANG R-S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review[J]. J Taiwan Inst Chem E,2017,71:214−234. doi: 10.1016/j.jtice.2016.12.014
    [48] 叶协锋, 于晓娜, 周涵君, 李志鹏, 张晓帆. 不同秸秆生物炭的孔隙结构及其差异[J]. 生物质化学工程,2019,53(2):41−46. doi: 10.3969/j.issn.1673-5854.2019.02.007

    YE Xie-feng, YU Xiao-na, ZHOU Han-jun, LI Zhi-peng, ZHANG Xiao-fan. Pore structure and fractal characteristics of biochars from different straw[J]. Biomass Chem Eng,2019,53(2):41−46. doi: 10.3969/j.issn.1673-5854.2019.02.007
    [49] 张瑞钢, 钱家忠, 陈钰辉, 刘昊松, 李永飞, 褚巧英. 玉米和小麦秸秆生物炭对土壤重金属污染修复实验研究[J]. 合肥工业大学学报(自然科学版),2022,45(3):347−355.

    ZHANG Rui-gang, QIAN Jia-zhong, CHEN Yu-hui, LIU Hao-song, LI Yong-fei, CHU Qiao-ying. Experimental study on remediation effect maize and wheat biochar on heavy metal contaminated soil[J]. J Hefei Univ Technol (Nat Sci Ed),2022,45(3):347−355.
    [50] 谭珍珍, 张学杨, 方茹, 骆俊鹏, 安天一, 杨正武, 张茹, 贺斌. 小麦秸秆生物炭吸附诺氟沙星特性[J]. 工业水处理,2020,40(1):24−28. doi: 10.11894/iwt.2018-1088

    TAN Zhen-zhen, ZHANG Xue-yang, FANG Ru, LUO Jun-peng, AN Tian-yi, YANG Zheng-wu, ZHANG Ru, HE Bin. Adsorption property of norfloxacin on wheat stalk biochar[J]. Ind Water Treat,2020,40(1):24−28. doi: 10.11894/iwt.2018-1088
    [51] 郎印海, 刘伟, 王慧. 生物炭对水中五氯酚的吸附性能研究[J]. 中国环境科学,2014,34(8):2017−2023.

    LANG Yin-hai, LIU Wei, WANG Hui. Adsorption efficiencies of pentachlorophenol from aqueous solution onto biochars[J]. China Environ Sci,2014,34(8):2017−2023.
    [52] WANG P P, LIU X G, YU B C, WU X H, XU J, DONG F S, ZHENG Y Q. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution[J]. Sci Total Environ,2020,702:134767−134775. doi: 10.1016/j.scitotenv.2019.134767
    [53] HUONG P T, JITAE K, TAHTAMOUNI T M A, TRI N L M, KIM H H, CHO K H, LEE C. Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater[J]. J Water Process Eng,2020,33:101037−101043. doi: 10.1016/j.jwpe.2019.101037
    [54] KARAM D S, NAGABOVANALLI P, RAJOO K S, ISHAK C F, ABDU A, ROSLI Z, MUHARAM F M, ZULPERI D. An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application[J]. J Saudi Soc Agr Sci,2022,21(3):149−159.
    [55] 呼生春. 漆树木材热解及产物特性研究[D]. 咸阳: 西北农林科技大学, 2021.

    HU Sheng-chun. Study on pyrolysis method of lacquer wood and its product properties[D]. Xianyang: Northwest A&F University, 2021.
    [56] 张卓然, 刘清华, 王伟刚, 戎静, 曹瑞杰, 罗文涛, 刘超, 王亚宜. 制备温度对竹炭基生物炭理化特征的影响[J]. 环境工程,2021,39(11):96−102 + 126. doi: 10.13205/j.hjgc.202111012

    ZHANG Zhuo-ran, LIU Qing-hua, WANG Wei-gang, RONG Jing, CAO Rui-jie, LUO Wen-tao, LIU Chao, WANG Ya-yi. Effect of pyrolysis temperature on the physical and chemical characteristics of bamboo-based biochar[J]. Environ Eng,2021,39(11):96−102 + 126. doi: 10.13205/j.hjgc.202111012
    [57] 陈佼, 李滨伶, 陆一新, 李晓媛, 李雪梅, 刘浩霖. 动物粪便基生物炭在污水处理中的应用研究进展[J]. 水处理技术, 2022, 48(7): 1–6.

    CHEN Jiao, LI Bin-ling, LU Yi-xin, LI Xiao-yuan, LI Xue-mei, LIU Hao-lin. Research progress in application of animal manure-based biochars in wastewater treatment[J]. Technol Water Treat, 2022, 48(7): 1–6.
    [58] WU Q Y, ZHANG Y, CUI M H, LIU H, LIU H B, ZHENG Z Y, ZHENG W, ZHANG C C, WEN D H. Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater: Performance and mechanism[J]. J Hazard Mater,2022,426:127798−127809. doi: 10.1016/j.jhazmat.2021.127798
    [59] RANGABHASHIYAM S, LINS P V D S, OLIVEIRA L M T D M, SEPULVEDA P, IGHALO J O, RAJAPAKSHA A U, MEILI L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review[J]. Environ Pollut,2022,293:118581−118597. doi: 10.1016/j.envpol.2021.118581
    [60] 张苗, 邵彩虹. 不同制备条件下小麦秸秆生物炭性能[J]. 区域治理,2019,(36):115−117. doi: 10.3969/j.issn.2096-4595.2019.36.041

    ZHANG Miao, SHAO Cai-hong. Performance of wheat straw biochar under different preparation conditions[J]. Reg Gov,2019,(36):115−117. doi: 10.3969/j.issn.2096-4595.2019.36.041
    [61] XING W, LIU C, ZHOU Z Y, ZHOU J, WANG G Q, ZHUO S P, XUE Q Z, SONG L H, YAN Z F. Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons[J]. Nanoscale Res Lett,2014,9(1):189−196. doi: 10.1186/1556-276X-9-189
    [62] KOUTCHEIKO S, MONREAL C M, KODAMA H, MCCRACKEN T, KOTLYAR L. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure[J]. Bioresour Technol,2007,98(13):2459−2464. doi: 10.1016/j.biortech.2006.09.038
    [63] 王炯, 张品, 张舒晴, 刘圣勇, 鲁杰, 温萍. 温度对秸秆生物炭理化特性和电化学特性的影响[J]. 太阳能学报,2022,43(5):399−404.

    WANG Jiong, ZHANG Pin, ZHANG Shu-qing, LIU Sheng-yong, LU Jie, WEN Ping. Effect of Temperature on physicochemical Properties of Straw Biochar: Focus on Surface Appearance and Electrochemical Properties[J]. Acta Energ Sol Sin,2022,43(5):399−404.
    [64] 王震宇, 刘国成, XING M, 李锋民, 郑浩. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学,2014,35(12):4735−4744. doi: 10.13227/j.hjkx.2014.12.042

    WANG Zhen-yu, LIU Guo-cheng, XING M, LI Feng-min, ZHENG Hao. Adsorption of Cd( II) Varies with Biochars Derived at Different Pyrolysis Temperatures[J]. Environ Sci,2014,35(12):4735−4744. doi: 10.13227/j.hjkx.2014.12.042
    [65] SHAABAN A, SE S M, DIMIN M F, JUOI J M, HUSIN M H M, MITAN N M M. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis[J]. J Anal Appl Pyrolysis,2014,107:31−39. doi: 10.1016/j.jaap.2014.01.021
    [66] YOU S, OK Y S, CHEN S S, TSANG D C W, KWON E E, LEE J, WANG C H. A critical review on sustainable biochar system through gasification: Energy and environmental applications[J]. Bioresour Technol,2017,246:242−253. doi: 10.1016/j.biortech.2017.06.177
    [67] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, HARRIS E, ROBINSON B, SIZMUR T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environ Pollut,2011,159(12):3269−3282. doi: 10.1016/j.envpol.2011.07.023
    [68] SHEN Y W, LINCILLE J L, IGNACIO-DE LEON P A A, SCHOENE R P, URGUN-DEMIRTAS M. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar[J]. J Cleaner Prod,2016,135:1054−1064. doi: 10.1016/j.jclepro.2016.06.144
    [69] MA'MUN S, DINDORE V Y, SVENDSEN H F. Kinetics of the reaction of carbon dioxide with aqueous solutions of 2-((2-aminoethyl) amino) ethanol[J]. Ind Eng Chem Res,2007,46(2):385−394. doi: 10.1021/ie060383v
    [70] OGUNGBENRO A E, QUANG D V, AL-ALI K A, VEGA L F, ABU-ZAHRA M R M. Physical synthesis and characterization of activated carbon from date seeds for CO2 capture[J]. J Environ Chem Eng,2018,6(4):4245−4252. doi: 10.1016/j.jece.2018.06.030
    [71] DISSANAYAKE P D, YOU S, IGALAVITHANA A D, XIA Y F, BHATNAGAR A, GUPTA S, KUA H W, KIM S, KWON J H, TSANG D C W, OK Y S. Biochar-based adsorbents for carbon dioxide capture: A critical review[J]. Renewable Sustainable Energy Rev,2020,119:109582−109595. doi: 10.1016/j.rser.2019.109582
    [72] SHAFAWI A N, MOHAMED A R, LAHIJANI P, MOHAMMADI M. Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches[J]. J Environ Chem Eng,2021,9(6):106869−106903. doi: 10.1016/j.jece.2021.106869
    [73] BACH M T. Impact of surface chemistry on adsorption: Tailoring of activated carbon[D]. Gainesville: University of Florida, 2007.
    [74] LUSSIER M G, ZHANG Z, MILLER D J. Characterizing rate inhibition in steam/hydrogen gasification via analysis of adsorbed hydrogen[J]. Carbon,1998,36(9):1361−1369. doi: 10.1016/S0008-6223(98)00123-7
    [75] 刘露. 机械球磨法改性生物炭材料研究进展[J]. 四川化工,2019,22(3):14−16. doi: 10.3969/j.issn.1672-4887.2019.03.005

    LIU Lu. Research progress on modification of biochar by mechanical ball milling[J]. Sichuan Chem Ind,2019,22(3):14−16. doi: 10.3969/j.issn.1672-4887.2019.03.005
    [76] 易鹏, 吴国娟, 段文焱, 吴敏, 潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报,2020,34(3):43−49. doi: 10.11896/cldb.19030080

    YI Peng, WU Guo-juan, DUAN Wen-yan, WU Min, PAN Bo. Research progress on modification and aging of biochar and its environment implications[J]. Mater Rep,2020,34(3):43−49. doi: 10.11896/cldb.19030080
    [77] 胡龙龙, 曹勇, 胡友彪. 改性生物炭的制备及其环境应用进展[J]. 江苏农业科学,2020,48(21):46−52. doi: 10.15889/j.issn.1002-1302.2020.21.008

    HU Long-long, CAO Yong, HU You-biao. Research progress on preparation and environmental application of modified biochar[J]. Jiangsu Agr Sci,2020,48(21):46−52. doi: 10.15889/j.issn.1002-1302.2020.21.008
    [78] XU X Y, ZHENG Y L, GAO B, CAO X D. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red[J]. Chem Eng J,2019,368:564−572. doi: 10.1016/j.cej.2019.02.165
    [79] FAN Y, WANG B, YUAN S H, WU X H, CHEN J, WANG L L. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal[J]. Bioresour Technol,2010,101(19):7661−7664. doi: 10.1016/j.biortech.2010.04.046
    [80] DING S, LIU Y X. Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars[J]. Fuel,2020,260:116382−116391. doi: 10.1016/j.fuel.2019.116382
    [81] 石硕. 藻基多孔生物炭的制备及其吸附烟气中CO2的研究[D]. 镇江: 江苏大学, 2021.

    SHI Shuo. Study on preparation of algae-based porous biochars and adsorption of CO2 from coal-fired flue gas[D]. Zhenjiang: Jiangsu University, 2021.
    [82] YANG Z X, ZHANG G J, XU Y, ZHAO P Y. One step N-doping and activation of biomass carbon at low temperature through[J]. J CO2 Util,2019,33:320−329. doi: 10.1016/j.jcou.2019.06.021
    [83] ZUBBRI N A, MOHAMED A R, KAMIUCHI N, MOHAMMADI M. Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation[J]. Environ Sci Pollut R,2020,27(11):11809−11829. doi: 10.1007/s11356-020-07734-3
    [84] LAHIJANI P, MOHAMMADI M, MOHAMED A R. Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition[J]. J CO2 Util,2018,26:281−293. doi: 10.1016/j.jcou.2018.05.018
    [85] CHATTERJEE R, SAJJADI B, MATTERN D L, CHEN W Y, ZUBATIUK T, LESZCZYNSKA D, LESZCZYNSKI J, EGIEBOR N O, HAMMER N. Ultrasound cavitation intensified amine functionalization: A feasible strategy for enhancing CO2 capture capacity of biochar[J]. Fuel,2018,225:287−298. doi: 10.1016/j.fuel.2018.03.145
    [86] SALEH M A D, PADILHA P M, HAUPTLI L, BERTO D A. The ultra-sonication of minerals in swine feed[J]. J Anim Sci Biotechno,2015,6(1):32−39. doi: 10.1186/s40104-015-0030-3
    [87] ZHANG X, ZHANG S H, YANG H P, FENG Y, CHEN Y Q, WANG X H, CHEN H P. Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment[J]. Chem Eng J,2014,257:20−27. doi: 10.1016/j.cej.2014.07.024
    [88] 任艳娇, 赵换萍, 许慧杰. 生物炭基活性炭吸附CO2研究进展[J]. 山东化工,2022,51(14):90−93. doi: 10.3969/j.issn.1008-021X.2022.14.028

    REN Yan-jiao, ZHAO Huan-ping, XU Hui-jie. Research progress on CO2 adsorption by biochar-based activated carbon[J]. Shandong Chem Ind,2022,51(14):90−93. doi: 10.3969/j.issn.1008-021X.2022.14.028
    [89] SHEN W Z, FAN W B. Nitrogen-containing porous carbons: Synthesis and application[J]. J Mater Chem A,2012,1(4):999−1013.
    [90] GUO L P, YANG J, HU G S, HU X, WANG L L, DONG Y F, DACOSTA H, FAN M H. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell[J]. ACS Sustainable Chem Eng,2016,4(5):2806−2813. doi: 10.1021/acssuschemeng.6b00327
    [91] WEI H R, DENG S B, HU B Y, CHEN Z H, WANG B, HUANG J, YU G. Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores[J]. ChemSusChem,2012,5(12):2354−2360. doi: 10.1002/cssc.201200570
    [92] IGALAVITHANA A D, CHOI S W, SHANG J, HANIF A, DISSANAYAKE P D, TSANG A C W, KWON J H, LEE K B, OK Y S. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry[J]. Sci Total Environ,2020,739:139845−139879. doi: 10.1016/j.scitotenv.2020.139845
    [93] QIAN D, LEI C, WANG E M, LI W C, LU A H. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity[J]. ChemSusChem,2014,7(1):291−298. doi: 10.1002/cssc.201300585
    [94] LIU Y Y, WILCOX J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons[J]. Environ Sci Technol,2012,46(3):1940−1947. doi: 10.1021/es204071g
    [95] Xing W, LIU C, ZHOU Z Y, ZHOU J, ZHUO S P, GAO H, WANG G Q, QIAO S Z. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction[J]. Energy Environ Sci,2012,5(6):7323−7327. doi: 10.1039/c2ee21653a
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  462
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2022-12-13
  • 录用日期:  2023-02-02
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回