留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PVC和木质纤维素共热解及Cl释放特性研究

姚佳桂 刘华财 黄艳琴 武修一 崔杰 李伟振 阴秀丽 吴创之

姚佳桂, 刘华财, 黄艳琴, 武修一, 崔杰, 李伟振, 阴秀丽, 吴创之. PVC和木质纤维素共热解及Cl释放特性研究[J]. 燃料化学学报(中英文), 2023, 51(7): 939-948. doi: 10.19906/j.cnki.JFCT.2023014
引用本文: 姚佳桂, 刘华财, 黄艳琴, 武修一, 崔杰, 李伟振, 阴秀丽, 吴创之. PVC和木质纤维素共热解及Cl释放特性研究[J]. 燃料化学学报(中英文), 2023, 51(7): 939-948. doi: 10.19906/j.cnki.JFCT.2023014
YAO Jia-gui, LIU Hua-cai, HUANG Yan-qin, WU Xiu-yi, CUI Jie, LI Wei-zhen, YIN Xiu-li, WU Chuang-zhi. Co-pyrolysis and Cl release characteristics of PVC and lignocellulose[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 939-948. doi: 10.19906/j.cnki.JFCT.2023014
Citation: YAO Jia-gui, LIU Hua-cai, HUANG Yan-qin, WU Xiu-yi, CUI Jie, LI Wei-zhen, YIN Xiu-li, WU Chuang-zhi. Co-pyrolysis and Cl release characteristics of PVC and lignocellulose[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 939-948. doi: 10.19906/j.cnki.JFCT.2023014

PVC和木质纤维素共热解及Cl释放特性研究

doi: 10.19906/j.cnki.JFCT.2023014
基金项目: 国家自然科学基金(52176140),中央高校基本科研业务费专项资金(2022MS027),广东省科技计划项目(2021A0505030054)和广州市科技计划项目(202102080357)资助
详细信息
    通讯作者:

    E-mail: liuhc@ms.giec.ac.cn

    huangyq@ncepu.edu.cn

  • 中图分类号: TK6

Co-pyrolysis and Cl release characteristics of PVC and lignocellulose

Funds: The project was supported by the National Natural Science Foundation of China (52176140), the Fundamental Research Funds for the Central Universities (2022MS027), the Science and Technology Program of Guangdong (2021A0505030054), the Science and Technology Program of Guangzhou (202102080357)
  • 摘要: 生活干垃圾的主要有机组分为聚氯乙烯 (PVC)等多聚类废弃物和木质纤维素,为了阐明其热解特性和Cl的迁移规律,本实验研究了PVC与木质纤维三组分(纤维素、半纤维素和木质素)共热解过程的相互作用及氯化物释放特性。结果表明,在脱氯化氢阶段,PVC与三组分之间存在正协同作用,PVC能够加速三组分的热解;共热解过程中Cl主要以HCl和CH3Cl的形态释放,其次是氯苯。纤维素与PVC共热解过程中,HCl作为酸性催化剂促进生成了更多的芳香烃。纤维素与PVC共热解过程中,HCl作为酸性催化剂促进生成了更多的芳香烃;PVC与半纤维素共热解时,半纤维素生成的乙酸降低了HCl释放的起始温度,25–30 ℃;与纤维素和半纤维素相比,木质素对HCl释放的抑制作用最大。木质素增强了PVC化学键C−Cl断裂, 减少HCl但促进了CH3Cl释放。三组分促进了PVC的热裂解反应,降低了脱氯化氢阶段的反应活化能,混合物热解平均活化能比纯PVC分别降低了25.88%–48.73%,36.46%–43.73%,44.88%–72.83%。
  • FIG. 2467.  FIG. 2467.

    FIG. 2467.  FIG. 2467.

    图  1  PVC与木质纤维素三组分混合物热解过程失重曲线

    Figure  1  Weight loss curves during pyrolysis of three-component mixtures of PVC and lignocellulose

    ((a1), (a2)): PVC-C; ((b1), (b2)): PVC-X, ((c1), (c2)): PVC-L

    图  2  PVC和木质纤维素三组分混合物差值曲线

    Figure  2  ΔW curves of three-component mixtures of PVC and lignocellulose

    (a): PVC-C; (b): PVC-X; (c): PVC-L

    图  3  PVC和木质纤维素三组分混合物在特征分解温度的挥发分红外光谱谱图

    Figure  3  FT-IR spectra of volatiles from three-component mixtures of PVC and lignocellulose at characteristic temperature

    ((a1), (a2)): PVC-C; ((b1), (b2)): PVC-X; ((c1), (c2)): PVC-L

    图  4  PVC和木质纤维素混合物共热解释放H-Cl官能团变化

    Figure  4  Evolution history of H-CL during co-pyrolysis of three-component mixtures of PVC and lignocellulose

    (a): PVC-C; (b): PVC-X; (c): PVC-L

    图  5  PVC和木质纤维三组分素混合物共热解释放m/z=36.5、50.5的离子演化曲线

    Figure  5  Evolution curves of the ionized fragments with m/z=36.5, 50.5 from co-pyrolysis of three-component mixtures of PVC and lignocellulose

    ((a1), (a2)): PVC-C; ((b1), (b2)): PVC-X; ((c1), (c2)): PVC-L

    图  6  PVC和木质纤维素三组分热解释放的HCl和CH3Cl离子碎片峰面积

    Figure  6  Peak area values of HCl and CH3Cl during pyrolysis of three-component mixtures of PVC and lignocellulose

    (a): HCl; (b): CH3Cl

    图  7  脱氯化氢阶段活化能的演变

    Figure  7  Evolution of activation energy in the de-hydrogen chloride phase

    表  1  PVC和纤维素、半纤维素、木质素的工业分析与元素分析

    Table  1  Proximate and ultimate analysis of PVC and cellulose, xylan, lignin

    MaterialUltimate analysis w/%Proximate analysis w/%LHV /(MJ·kg–1)
    CHNOaSClAVFC bM
    PVC38.704.740.000.050.0156.500.0094.095.730.1820.11
    Cellulose42.616.130.0051.120.040.000.0089.685.494.8321.75
    Xylan42.546.360.0051.070.030.000.3491.010.618.0417.09
    Lignin45.693.960.0050.560.060.009.5052.7635.871.8717.11
    a: by difference (O=100−C−H−N−Cl−S); b: by difference (FC=100−AVM)
    下载: 导出CSV
  • [1] SHEN M, HU T, HUANG W, SONG B, QIN M, YI H, ZENG G, ZHANG Y. Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant[J]. Sci Total Environ,2021,779:146528. doi: 10.1016/j.scitotenv.2021.146528
    [2] TANG Y, HUANG Q, SUN K, CHI Y, YAN J. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic[J]. Bioresour Technol,2018,249:16−23. doi: 10.1016/j.biortech.2017.09.210
    [3] VIVERO L, BARRIOCANAL C, LVAREZ R, DíEZ M. Effects of plastic wastes on coal pyrolysis behaviour and the structure of semicokes - ScienceDirect[J]. J Anal Appl Pyrolysis,2005,74(1/2):327−336.
    [4] BRADEN J, BAI X. Production of biofuel precursor chemicals from the mixture of cellulose and polyvinylchloride in polar aprotic solvent[J]. Waste Manag,2018,78:894−902. doi: 10.1016/j.wasman.2018.07.011
    [5] LU P, HUANG Q X, BOURTSALAS A C, CHI Y, YAN J H. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride[J]. Fuel,2018,230:359−367. doi: 10.1016/j.fuel.2018.05.072
    [6] EPHRAIM A, PHAM MINH D, LEBONNOIS D, PEREGRINA C, SHARROCK P, NZIHOU A. Co-pyrolysis of wood and plastics: Influence of plastic type and content on product yield, gas composition and quality[J]. Fuel,2018,231:110−117. doi: 10.1016/j.fuel.2018.04.140
    [7] ZHOU H, LONG Y, MENG A, LI Q, ZHANG Y. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis[J]. Waste Manag,2015,38:194−200. doi: 10.1016/j.wasman.2014.09.027
    [8] ZHOU H, LONG Y Q, MENG A H, LI Q H, ZHANG Y G. Interactions of three municipal solid waste components during co-pyrolysis[J]. J Anal Appl Pyrolysis.,2015,111:265−271. doi: 10.1016/j.jaap.2014.08.017
    [9] CHEN R, ZHANG J, LUN L, LI Q, ZHANG Y. Comparative study on synergistic effects in co-pyrolysis of tobacco stalk with polymer wastes: Thermal behavior, gas formation, and kinetics[J]. Bioresour Technol,2019,292:121970. doi: 10.1016/j.biortech.2019.121970
    [10] ZHOU H, WU C F, ONWUDILI J A, MENG A H, ZHANG Y G, WILLIAMS P T. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis[J]. Rsc Adv,2015,5(15):11371−11377. doi: 10.1039/C4RA10639C
    [11] MATSUZAWA Y, AYABE M, NISHINO J, KUBOTA N, MOTEGI M. Evaluation of char fuel ratio in municipal pyrolysis waste[J]. Fuel,2004,83(11/12):1675−1687. doi: 10.1016/j.fuel.2004.02.006
    [12] MATSUZAWA Y, AYABE M, NISHINO J. Acceleration of cellulose co-pyrolysis with polymer[J]. Polym Degrad Stab,2001,71(3):435−444. doi: 10.1016/S0141-3910(00)00195-6
    [13] ÖZSIN G, PÜTÜN A E. TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process[J]. Energy Convers Manage,2019,182:143−153. doi: 10.1016/j.enconman.2018.12.060
    [14] KURAMOCHI H, NAKAJIMA D, GOTO S, SUGITA K, WU W, KAWAMOTO K. HCl emission during co-pyrolysis of demolition wood with a small amount of PVC film and the effect of wood constituents on HCl emission reduction[J]. Fuel,2008,87(13):3155−3157.
    [15] DUANGCHAN A, SAMART C. Tertiary recycling of PVC–Containing plastic waste by copyrolysis with cattle manure[J]. Waste Manag,2008,28(11):2415−2421. doi: 10.1016/j.wasman.2007.12.010
    [16] 马师白, 殷剑君, 鲁军, 高晋生. PVC的热解脱氯动力学分析[J]. 环境化学,2001,20(2):172−178. doi: 10.3321/j.issn:0254-6108.2001.02.012

    MA Shi-bai, YIN jian-jun, LU Jun, GAO Jin-sheng. Kinetic analysis of PVC pyrolysis dechlorination[J]. Environ Chem,2001,20(2):172−178. doi: 10.3321/j.issn:0254-6108.2001.02.012
    [17] TANG C, TAN J, SHI Z, FAN Y, YU Z, PENG X. Chlorine and bromine isotope fractionations of halogenated organic compounds in fragmentation by gas chromatography-electron ionization high resolution mass spectrometry[J]. J Chromatogr A,2019,1603:278−287. doi: 10.1016/j.chroma.2019.06.017
    [18] PENG Y Y, WU S B. The structural and thermal characteristics of wheat straw hemicellulose[J]. J Anal Appl Pyrolysis,2010,88(2):134−139. doi: 10.1016/j.jaap.2010.03.006
    [19] XUE Y, BAI X. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Convers Manage,2018,164:629−638. doi: 10.1016/j.enconman.2018.03.036
    [20] QUAN C, GAO N. Copyrolysis of biomass and coal: A review of effects of copyrolysis parameters, product properties, and synergistic mechanisms[J]. Biomed Res Int,2016,2016:1−11.
    [21] ENGAMBA ESSO S B, XIONG Z, CHAIWAT W, KAMARA M F, LONGFEI X, XU J, EBAKO J, JIANG L, SU S, HU S, WANG Y, XIANG J. Review on synergistic effects during co-pyrolysis of biomass and plastic waste: Significance of operating conditions and interaction mechanism[J]. Biomass Bioenergy,2022,159.
    [22] AHMARUZZAMAN M, SHARMA D K. Coprocessing of petroleum vacuum residue with plastics, coal, and biomass and its synergistic effects[J]. Energy Fuels,2007,21(2):891−897. doi: 10.1021/ef060102w
    [23] JANG B N, WILKIE C A. A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate[J]. Polym Degrad Stab,2004,86(3):419−430. doi: 10.1016/j.polymdegradstab.2004.05.009
    [24] PUGLISI C, STURIALE L, MONTAUDO G. Thermal decomposition processes in aromatic polycarbonates investigated by mass spectrometry[J]. Macromolecules,1999,32(7):2194−2203. doi: 10.1021/ma981238z
    [25] JIN W, SHEN D K, LIU Q, XIAO R. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS[J]. Polym Degrad Stab,2016,133:65−74. doi: 10.1016/j.polymdegradstab.2016.08.001
    [26] CHEN W H, WANG C W, ONG H C, SHOW P L, HSIEH T H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin[J]. Fuel,2019,258.
    [27] WEI X, MA X, PENG X, YAO Z, YANG F, DAI M. Comparative investigation between co-pyrolysis characteristics of protein and carbohydrate by TG-FTIR and Py-GC/MS[J]. J Anal Appl Pyrolysis,2018,135:209−218.
    [28] 薛俊杰, 汪雨杭, 朱鹏昆, 靳明诺, 孙慕菲. PVC与纤维素混合热解的芳香烃产物分布特性研究[J]. 中国资源综合利用,2022,40(5):40−22 + 45. doi: 10.3969/j.issn.1008-9500.2022.05.012

    XUE Jue-jie, WANG Yu-hang, ZHU Peng-kun, JIN Ming-nuo, SUN Mu-fei. Study on the distribution characteristics of aromatic hydrocarbon products in the Co-pyrolysis of PVC and cellulose[J]. China Res Compr Util,2022,40(5):40−22 + 45. doi: 10.3969/j.issn.1008-9500.2022.05.012
    [29] MINSKER K. Degradation and Stabilization of PVC [J]. Entsiklopediya polimerov, 1972, 1
    [30] HAN B, CHEN Y, WU Y, RUN H D. Co-pyrolysis behaviors and kinetics of plastics-biomass blends through thermogravimetric analysis[J]. J Therm Anal Calorim,2014,115(1):227−235. doi: 10.1007/s10973-013-3228-7
    [31] ZHOU D W, CHEN J L, WU J, YANG J P, WANG H P. Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution[J]. Sustainable Mater Technol,2021,28:e00251.
    [32] TEJADO A, PEAA C, LABIDI J, ECHEVERRIA J M, MONDRAGON I. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis[J]. Bioresour Technol,2007,98(8):1655−1663. doi: 10.1016/j.biortech.2006.05.042
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  134
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2022-11-30
  • 录用日期:  2022-12-02
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回