留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质直接参与炼铁的典型工艺过程及污染物生成机理研究进展

王子琪 马颢菲 苑鹏 沈伯雄 武兵强 张威力

王子琪, 马颢菲, 苑鹏, 沈伯雄, 武兵强, 张威力. 生物质直接参与炼铁的典型工艺过程及污染物生成机理研究进展[J]. 燃料化学学报(中英文), 2023, 51(9): 1338-1358. doi: 10.19906/j.cnki.JFCT.2023015
引用本文: 王子琪, 马颢菲, 苑鹏, 沈伯雄, 武兵强, 张威力. 生物质直接参与炼铁的典型工艺过程及污染物生成机理研究进展[J]. 燃料化学学报(中英文), 2023, 51(9): 1338-1358. doi: 10.19906/j.cnki.JFCT.2023015
WANG Zi-qi, MA Hao-fei, YUAN Peng, SHEN Bo-xiong, WU Bing-qiang, ZHANG Wei-li. Research progress of the typical ironmaking processes with the direct participation of biomass and the related formation mechanism of pollutants[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1338-1358. doi: 10.19906/j.cnki.JFCT.2023015
Citation: WANG Zi-qi, MA Hao-fei, YUAN Peng, SHEN Bo-xiong, WU Bing-qiang, ZHANG Wei-li. Research progress of the typical ironmaking processes with the direct participation of biomass and the related formation mechanism of pollutants[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1338-1358. doi: 10.19906/j.cnki.JFCT.2023015

生物质直接参与炼铁的典型工艺过程及污染物生成机理研究进展

doi: 10.19906/j.cnki.JFCT.2023015
基金项目: 国家自然科学基金区域创新发展联合基金(U20A20302)和河北省自然科学基金青年项目(E2021202169)资助
详细信息
    作者简介:

    王子琪(1999-),女,硕士研究生,环境工程,E-mail:1806299365@qq.com

    通讯作者:

    E-mail: yuanpeng@rrtj.cn

    shenbx@hebut.edu.cn

  • 中图分类号: TF556

Research progress of the typical ironmaking processes with the direct participation of biomass and the related formation mechanism of pollutants

Funds: The project was supported by the National Natural Science Foundation of China Joint Fund for Regional Innovation Development (U20A20302) and Hebei Natural Science Foundation Youth Project (E2021202169)
  • 摘要: 应用可再生的清洁资源替代煤、焦等化石资源用于炼铁是钢铁企业实现“碳中和”、“碳达峰”的重要途径之一。农林废弃物等生物质资源因其廉价易得、低温还原性较强以及碳中性等特点而在炼铁领域受到广泛关注。本综述着眼于热解与燃烧这两种主要的生物质热利用方式,较为系统地对上述两个过程中的反应机理、气相产物及污染物释放特性进行了概括性分析;以高炉喷吹生物质燃料和生物质还原剂用于直接还原炼铁为代表,从工艺概况、过程解析及污染物生成机理三个方面对基于上述两种热利用方式的生物质直接参与炼铁的典型工艺过程进行了综合分析;针对生物质直接参与炼铁的上述典型工艺进行了经济性分析及进一步减排进行展望,以期为缓解化石能源供需矛盾,减少炼铁温室气体排放乃至钢铁工业的转型升级提供有价值的参考。
  • FIG. 2677.  FIG. 2677.

    FIG. 2677.  FIG. 2677.

    图  1  生物质当前热化学利用技术概述

    Figure  1  Overview of current thermochemical utilisation technologies for biomass

    图  2  生物质中半纤维素、纤维素和木质素热解过程[17]

    Figure  2  Pyrolysis processes of hemicellulose, cellulose and lignin in biomass[17]

    图  3  生物质热解过程中N元素的迁移规律

    Figure  3  Migration law of nitrogen during biomass pyrolysis

    图  4  生物质燃烧过程

    Figure  4  Combustion process of biomass fuel

    图  5  生物质燃烧过程NOx的生成路径

    Figure  5  NOx generation pathways during biomass combustion

    图  6  挥发分N燃烧路径

    Figure  6  Combustion route of volatile N

    图  7  煤和秸秆等生物质单独燃烧的TG、DTG曲线[70]

    Figure  7  TG and DTG curves of individual combustion of coal and biomass[70]

    (a): TG curves; (b): DTG curves

    图  8  生物质单独燃烧时S元素的迁移路径

    Figure  8  Migration pathways of S during the combustion of biomass

    图  9  生物质直接还原炼铁机理示意图

    Figure  9  Mechanism diagram of biomass direct reduction iron making

    表  1  常见因素对生物热解过程中NOx典型前驱物转化的影响

    Table  1  Effects of the conventional factors on the conversion of typical NOx precursors during pyrolysis of biomass

    FactorValueNH3HCNRef.
    Pyrolysis atmosphereCO2less impactinhibit[27]
    CO2 + H2Opromoteless impact[27]
    Arless effect at 550−850 ℃,
    lower yields at higher temperatures
    less impact[33]
    Temperature400−600 ℃conversion rate 5%almost no precipitation[34]
    600−800 ℃rapid increase in generationremained at a low level[30]
    >800 ℃continuously rising[33]
    the inverse ammonia reaction
    results in lower production[30]
    significantly promotes the formation of HCN[28][33]
    [30]
    [28]
    peak at 800 ℃, followed by
    a decrease in production
    generating volumes maintain an increasing trend[35]
    Heating rate<500 ℃almost no precipitationalmost no precipitation[30]
    >500 ℃slow: Inhibit
    rapid: promote
    slow: Inhibit
    rapid: promote
    [32]
    Particle size0−300 μmaccelerated releaseaccelerated release[32]
    600−900 μmpromotepromote hydrogenation[32]
    MetalsK, Napromotepromote[36], [37]
    Capromotepromote[38]
    <330 ℃ inhibits the conversion of N to NH3<330 ℃ inhibits the conversion of N to HCN[36]
    Feinhibitpromote[39]
    下载: 导出CSV

    表  2  生物质和煤的组分比较[49]

    Table  2  Comparison of the composition of biomass and coal[49]

    C/%H/%O/%Volatile/%Ash/%Density /(t·m−3)
    Biomass fuel (Wood)25−729−4564−715−160.49−0.65
    Coal (bituminous coal/anthracite)23−914−54−196−396−240.7−1.0
    下载: 导出CSV

    表  3  高炉喷吹生物质典型案例概述

    Table  3  Summary of typical cases of biomass injection in blast furnace

    BiomasTemperatureProportionPartical sizeEffectWeaknessesRef.
    Corncob
    Heatingrate:
    70 ℃/min
    20% coal
    80% corncob
    0.2−0.6 mmignition indices, volatile matter release indices and comprehensive performance indices increasevolatiles from biomass combustion reduce the reactivity of coal coke[74]
    1000 ℃100% corncob40−200 meshcombustion of corn cobs mixed with coal will prolong the combustion time[76]
    Straw
    1000 ℃20% rice stalks
    80% anthracite
    <0.075 mmstraw powder has a catalytic effect on the combustion of anthracite and can increase the combustion rate of the mixed fuelblast furnace cannot use biomass blowing alone because of its high impact on furnace conditions(biomass has more alkali metals)[10]
    [63]
    1150 ℃50∶50
    cotton stalk charcoal: anthracite
    <1 mmcombined burn index improved to 4.3333, combustion rate of 74%[69]
    1000 ℃anthracite: bituminous coal:7∶3, cotton rod charcoal can replace 30% bituminous coal<1 mmCO2 emission reduction can reach 65.7 kg/t[86]
    Peanut shells
    1100 ℃30% peanut shells
    70% anthracite
    <0.071 mmignition point of the fuel mixture is reduced and the burning rate at 500−600 ℃ increases significantlypeanut hulls reduce the enthalpy t of the mixed fuel[68]
    1000 ℃50/50 ratio of peanut shell char and anthracite
    <0.15 mmmaximum burn rate of 69.24% for the mixed fuelpeanut shell char from pyrolysis alone does not meet the fuel requirements for blast furnace injection in terms of ash fusibility temperature[87]
    1000 ℃30% corn straw charcoal
    70% anthracite
    200 meshlowering the ignition point of the mixed fuel and bringing forward the pulverised coal combustion[88]
    Bamboo
    850 ℃100% bamboo char100−200 mesh26.45% increase in combustion rate and 34.68% reduction in release of SO2bamboo charcoal is not suitable for blast furnace injection alone (low ash melting point)[67]
    Charcoal
    1200 ℃10% charcoal
    90% coal
    80−125 μmrelease of CO2 reduce 37%−45%
    preparation conditions of charcoal need to be regulated carefully[81]
    1700 ℃100% charcoal90−125 μmcombustion rate are same as coalpyrolysis temperature for preparing charcoal needs to be controlled accurately[82]
    1145 ℃150 kg coal
    100 kg/thm charcoal
    productivity of the blast furnace could be increased up to 25%oxygen enrichment, air blowing, and temperature conditions must be met simultaneously.[89]
    1100 ℃50% coal
    50% charcoal
    <70 μmmixture reaches its highest combustion rate in half the time it takes for the coal to be blown alone[75]
    下载: 导出CSV

    表  4  生物炭的制备工艺[84]

    Table  4  Preparation processes of biochar[84]

    ProcessTemperature/℃Reaction timeIngredients
    conditions
    Biochar yield/%
    Pyrolysisslow: 300−800>1 hNeeds to be dried35−50
    rapid: 400−6000.5−10 s15−35
    flash: 400−1000>2 s10−20
    Hydrothermalcharring
    170−2605 min−12 hNo drying required45−70
    下载: 导出CSV

    表  5  常规直接还原炼铁工艺[97]

    Table  5  Conventional direct-reduction ironmaking processes[97]

    ClassificationProcessReducing agentOreReduction temperature /℃
    Gas-based direct reductionvertical furnacenatural gas
    (gaseous reductant)
    lump or pellet ore800−1000
    canister1050−1100
    fluidisationpulverized ore900−1000
    iron carbide550−600 ℃
    Coal-based direct reductionrotary kilncoal
    (carbonaceous solid reductant)
    lump or pellet ore1000−1150
    rotary hearth furnacepulverized ore1300
    fixed-bed1200
    下载: 导出CSV

    表  6  生物质-铁矿粉复合球团研究进展

    Table  6  Research progress on biomass-iron ore fines composite pellets

    Research ObjectivesConditions
    (Temperature)
    (Carrier gas)
    (Partical size)
    Pellet IngredientsAdvantages or DisadvantagesRefs.
    Reaction path1100−1400 ℃
    N2
    <10 μm
    hematite∶graphite =
    1∶3(molar ratio)
    after a period of reaction, the reduction products cover the reduction agent, inhibit the reduction reaction[105]
    600−900 ℃
    N2
    <74-149 μm
    hematite∶palm kernel shell=
    7∶3(mass ratio)
    biomass can be reduced to the same extent at a lower temperature than the iron-coke mixture in the blast furnace method[65]
    1200 ℃
    N2
    hematite∶torrefied biomass=
    2∶1(mass ratio)
    roasting pre-treatment of biomass needs to be considered[107]
    Volume change600−1300 ℃
    N2
    <200 mesh
    hematite, straw fibre, bamboo charcoal, charcoal C/O=0.7pellets containing bamboo/charcoal need to be roasted at a higher temperature (300 ℃) to meet the strength of the subsequent production[110]
    [111]
    Reduction effect1200 ℃
    N2
    <0.15 mm
    hematite/straw fibre C/O=0.8
    (mass ratio)
    fibrous structure of the straw facilitates the binding of the pellets, reduces the use of binders[101]
    950−1100 ℃
    Ar
    0.074−0.300 mm
    iron concentrate
    pine sawdust
    C/O=0.4
    most of the volatile fraction in the biomass precipitates out during the low temperature phase, leaving less fixed carbon to sustain further reduction[23]
    800−1100 ℃
    Ar
    MC:<39.74 μm
    AB:<49.8 μm
    agave bagasse(AB): magnetite concentrate(MC)=10∶90/25∶75/
    35∶65/50∶50 (mass ratio)
    AB has a similar efficiency to fossil reductants (char, coal, and graphite)[112]
    850−1150 ℃
    N2
    hematite∶pine sawdust=
    96%∶2% (mass ratio)
    biomass increases the porosity and specific surface area of pellets and reduces the apparent activation energy of pellet reduction[117]
    1000−1300 ℃
    N2
    biochar made from rice husks, peanut shells and wood chips,Iron concentrate C/O=0.8/0.9/1.0increase in C/O facilitates the reduction of the pellets, but too much C/O can affect the pellet properties and strength[100]
    600−1350 ℃
    N2
    <0.3 mm
    hematite, bamboo char, straw fiber and charcoal C/O=0.5/0.7/0.9/1.1(mass ratio)tar produced during pyrolysis of raw biomass is detrimental to the operation of rotary bottom furnaces[103]
    1200 ℃
    Inert atmosphere
    <212 μm
    hematite: corn cob and groundnut shell (GN)=5∶10−12 (mass ratio)
    this study limits the seasonal availability of the biomass in particular agricultural waste[118]
    Reduction Mechanisms & Kinetics850−1150 ℃
    N2
    <250 μm
    hematite 80% pine sawdust 5%
    (mass ratio)
    composite pellets with the addition of biomass have a more sparse and porous appearance[113]
    [119]
    下载: 导出CSV
  • [1] 王广, 张宏强, 苏步新, 马静超, 海滨, 王静松. 我国钢铁工业碳排放现状与降碳展望[J]. 化工矿物与加工,2021,50(12):55−64.

    WANG Guang, ZHANG Hong-guang, SU Bu-xin, MA Jing-chao, HAI Bin, WANG Jing-song. Current situation of carbon emission and carbon reduction prospect of Chinese iron and steel industry[J]. Chem Min Process,2021,50(12):55−64.
    [2] 王新东, 侯长江, 田京雷. 钢铁行业烟气多污染物协同控制技术应用实践[J]. 过程工程学报,2020,20(9):997−1007.

    WANG Xin-dong, HOU Chang-jiang, TIAN Jing-lei. Application and practice of multi-pollutant cooperative control technology for flue gas in iron and steel industry[J]. J Proc Eng,2020,20(9):997−1007.
    [3] 张琦, 沈佳林, 许立松. 中国钢铁工业碳达峰及低碳转型路径[J]. 钢铁,2021,56(10):152−163.

    ZHANG Qi, SHEN Jia-lin, XU Li-song. Carbon peak and low-carbon transition path of China’s iron and steel industry[J]. STL,2021,56(10):152−163.
    [4] 江龙. 生物质热解气化过程中内在碱金属、碱土金属的迁移及催化特性研究[D]. 武汉: 华中科技大学, 2013.

    JIANG Long. Migration and catalytic characteristic of intrinsic AAEMs during pyrolysis and gasification process of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [5] SUOPAJÄRVI H, KEMPPAINEN A, HAAPAKANGAS J, FABRITIUS T. Extensive review of the opportunities to use biomass-based fuels in iron and steelmaking processes[J]. J Clnr Prod,2017,148:709−734. doi: 10.1016/j.jclepro.2017.02.029
    [6] 魏汝飞, 朱玉龙, 龙红明, 徐春保. 生物质铁矿球团研究现状与展望[J]. 烧结球团,2022,47(1):29−37.

    WEI Ru-fei, ZHU Yu-long, LONG Hong-ming, XU Chun-bao. Research status and prospect of biomass iron ore pellets[J]. Sintering Pelletizing,2022,47(1):29−37.
    [7] 苑鹏, 韩宏亮, 段东平. 生物质在炼铁中的应用现状与展望[C]. 郑州: 2014年全国炼铁生产技术会暨炼铁学术年会文集(下), 2014, 304−311.

    YUAN Peng, HAN Hong-liang, DUAN Dong-ping. The Status and Outlook of Using Biomass in the Ironmaking Process[C]. Zhengzhou: Proceedings of the 2014 National Ironmaking Production Technology Conference and Annual Ironmaking Academic Conference (below), 2014, 304−311.
    [8] GUO D, ZHU L, GUO S, CUI B, LUO S, LAGHARI M. Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer[J]. Fuel Process Technol,2016,148:276−281. doi: 10.1016/j.fuproc.2016.03.009
    [9] 曲余玲, 毛艳丽, 景馨, 李博. 生物质能在钢铁生产中的应用研究及前景分析[J]. 上海金属,2015,37(5):70−74.

    QU Yu-ling, MAO Yan-li, JING Xin, LI Bo. Application ang prospect of biomass used in steel production[J]. Shanghai Metals,2015,37(5):70−74.
    [10] 王国强. 高炉喷吹农林废弃物的应用基础研究[D]. 武汉: 武汉科技大学, 2013.

    WANG Guo-qiang. Applied fundamental research of injecting agricultural and forestry residues into Blast Furnace[D]. Wuhan: Wuhan University of Science and Technology, 2013.
    [11] STREZOV V. Iron ore reduction using sawdust: Experimental analysis and kinetic modelling[J]. Renew Nrg,2006,31(12):1892−1905.
    [12] 马玉升, 洪陆阔, 周朝刚, 苑鹏, 艾立群. 生物质用于直接还原工艺研究[J]. 钢铁钒钛,2019,40(4):106−109.

    MA Yu-sheng, HONG Lu-kuo, ZHOU Chao-gang, YUAN Peng, AI Li-qun. Application of biomass to the direct reduction process[J]. Iron Steel Van Tit,2019,40(4):106−109.
    [13] NG KW, GIROUX L, MACPHEE T, TODOSCHUK T, 仇晓磊. 生物燃料炼铁的短期潜力和长期展望[J]. 世界钢铁,2013,13(5):24−31.

    NG KW, GIROUX L, MACPHEE T, TODOSCHUK T, QIU Xiao-lei. Biofuel ironmaking strategy from a Canadian perspective: Short-term potential and long-term outlook[J]. World Steel,2013,13(5):24−31.
    [14] 高杰. 秸秆成型燃料改性及燃烧硫氮污染物排放特性研究[D]. 济南: 山东大学, 2017.

    GAO Jie. Study on upgrading of straw briquettes and bmission characteristics of sulfur and nitrogen during combustion[D]. Jinan: Shandong University, 2017.
    [15] NEVES D, THUNMAN H, MATOS A, TARELHO L, GÓMEZ-BAREA A. Characterization and prediction of biomass pyrolysis products[J]. Prog Energ Combust Sci,2011,37(5):611−630. doi: 10.1016/j.pecs.2011.01.001
    [16] 张晓东, 许敏, 孙荣峰, 孙立. 生物质热解动力学研究[C]. 郑州: 2004年中国生物质能技术与可持续发展研讨会, 2004, 168−173.

    ZHANG Xiao-dong, XU Min, SUN Rong-feng, SUN Li. Biomass pyrolysis kinetics study[C]. Zhengzhou: 2004 China Biomass Energy Technology and Sustainable Development Seminar, 2004, 168−173.
    [17] 刘武军. 生物质热解过程中污染物迁移转化机制的解析[D]. 合肥: 中国科学技术大学, 2014.

    LIU Wu-jun. Elucidation of mechanisms for transformation and migration of the pollutants during pyrolysis of biomass[D]. Hefei: University of Sci and Technol of China, 2014.
    [18] WIJAYANTI W, TANOUE K-I. Char formation and gas products of woody biomass pyrolysis[J]. Energy Procedia,2013,32:145−152. doi: 10.1016/j.egypro.2013.05.019
    [19] ASADULLAH M, RAHMAN M A, ALI M M, RAHMAN M S, MOTIN M A, SULTAN M B. Production of bio-oil from fixed bed pyrolysis of bagasse[J]. Fuel,2007,86(16):2514−2520. doi: 10.1016/j.fuel.2007.02.007
    [20] MOHAN D, PITTMAN CU, BRICKA M, SMITH F, YANCEY B, MOHAMMAD J. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. JCIS,2007,310(1):57−73.
    [21] AHO A, KUMAR N, ERÄNEN K, SALMI T, HUPA M, MURZIN D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure[J]. Fuel,2008,87(12):2493−2501. doi: 10.1016/j.fuel.2008.02.015
    [22] KAN T, STREZOV V, EVANS TJ. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable Sustainable Energy Rev,2016,57:1126−1140. doi: 10.1016/j.rser.2015.12.185
    [23] 黄柱成, 金芸芸, 易凌云, 王林, 胡建家. 生物质热解特性及其还原铁精矿研究[J]. 烧结球团,2021,46(3):65−71.

    HUANG Zhu-cheng, JIN Yun-yun, YI Lin-yun, WANG Lin, HU Jian-jia. Research on biomass pyrolysis characteristics and iron concentrate reduction[J]. Sint Pellet,2021,46(3):65−71.
    [24] 史训旺, 李建芬, 辛馨, 李红霞, 路遥, 刘照. NiO-Fe2O3/PG-γ-Al2O3催化剂的制备及其在秸秆热解中的应用[J]. 燃料化学学报,2017,45(12):1434−1440.

    SHI Xun-wang, LI Jian-fen, XIN Xin, LI Hong-xia, LU Yao, LIU Zhao. Preparation of NiO-Fe2O3/PG-γ-Al2O3 catalysts and its application in pyrolysis of biomass straw[J]. J Fuel Chem Technol,2017,45(12):1434−1440.
    [25] 何玉远. 煤与生物质共热解共气化过程中硫、氮的迁移规律研究[D]. 郑州: 郑州大学, 2018.

    HE Yu-yuan. Research on the transformation of sulfur and nitrogen during co-pyrolysis and co-gasification between coal and biomass[D]. Zhengzhou: Zhengzhou University, 2018.
    [26] 肖龙. 煤与玉米秸秆共热解硫元素的变迁[D]. 济南: 山东大学, 2020.

    XIAO Long. Changes of sulfur elements during co-pyrolysis of coal and corn stover[D]. Jinan: Shandong University, 2020.
    [27] ZHAN H, YIN X, HUANG Y, YUAN H, XIE J, WU C. Comparisons of formation characteristics of NOx precursors during pyrolysis of lignocellulosic industrial biomass wastes[J]. Energy Fuels,2017,31(9):9557−9567.
    [28] YUAN S, ZHOU Z, LI J, CHEN X, WANG F. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels,2010,24(11):6166−6171.
    [29] 王宗华. 热解、气化过程中燃料-N的形态转化及迁移规律研究[D]. 武汉: 华中科技大学, 2011.

    WANG Zong-hua. Research on form transformation and releasing regulation of fuel-N during pyrolysis and gasification[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [30] ZHAN H, ZHUANG X, SONG Y, YIN X, CAO J, SHEN Z. Step pyrolysis of N-rich industrial biowastes: Regulatory mechanism of NO precursor formation via exploring decisive reaction pathways[J]. Chem Eng J,2018,344:320−331.
    [31] HANSSON K-M, SAMUELSSON J, TULLIN C, ÅMAND L-E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame,2004,37:265−277.
    [32] 詹昊, 阴秀丽, 黄艳琴, 张晓鸿, 袁洪友, 谢建军. 药渣热解过程NOx前驱物生成特征及规律研究[J]. 燃料化学学报,2017,45(3):279−288. doi: 10.1016/S1872-5813(17)30017-8

    ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. J Fuel Chem Technol,2017,45(3):279−288. doi: 10.1016/S1872-5813(17)30017-8
    [33] 杨会凯, 常国璋, 张晓鸿, 谢建军, 阴秀丽, 吴创之. 固定床生物质热解气化过程N迁移实验研究[J]. 现代化工,2016,36(11):116−120.

    YANG Hui-kai, CHANG Guo-zhang, ZHANG Xiao-hong, XIE Jian-jun, YIN Xiu-li, WU Chuang-zhi. Nitrogen transformation with biomass pyrolysis and gasification in a fixed-bed reactor[J]. Mod Chem Ind,2016,36(11):116−120.
    [34] 苟进胜, 常建民, 任学勇. 生物质热解过程中氮元素迁移规律研究进展[J]. Sci Technol Rev,2012,30(14):70−74.

    GOU Jin-sheng, CHANG Jian-min, REN Xue-yong. A review on the release characterization of nitrogen speicies during biomass pyrolysis[J]. 科技导报,2012,30(14):70−74.
    [35] TIAN F, YU J, MCKENZIE L, HAYASHI J, CHIBA T, LI C. Formation of NO precursors during the pyrolysis of coal and biomass. Part VII. Pyrolysis and gasification of cane trash with steam[J]. Fuel,2005,84(4):371−376. doi: 10.1016/j.fuel.2004.09.018
    [36] REN Q, ZHAO C, WU X, LIANG C, CHEN X, SHEN J. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis,2009,85(12):447−453.
    [37] LIU J, ZHANG X, LU Q, SHAW A, HU B, JIANG X. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. J Energy Inst,2019,92(3):604−612. doi: 10.1016/j.joei.2018.03.012
    [38] 周建强, 高攀, 董长青, 杨勇平. 秸秆含氮模型化合物热解氮转化规律的实验研究[J]. 燃料化学学报,2015,43(12):1427−1432. doi: 10.3969/j.issn.0253-2409.2015.12.004

    ZHOU Jian-qiang, GAO pan, DONG Chang-qing, YANG Yong-ping. TG-FTIR analysis of nitrogen conversion during straw pyrolysis: A model compound study[J]. J Fuel Chem Technol,2015,43(12):1427−1432. doi: 10.3969/j.issn.0253-2409.2015.12.004
    [39] 冯泳程, 梁鹏飞, 郁鸿凌, 张瑞璞. 准东高铁煤与稻草秆热解NOx前驱物释放规律研究[J]. 上海理工大学学报,2018,40(6):545−551.

    FENG Yong-cheng, LIANG Peng-fei, YU Hong-ling, ZHANG Rui-pu. Release of NOx precursors in pyrolysis process of Zhun Dong high-iron coal and straw stalk[J]. Univ Shanghai Sci Technol,2018,40(6):545−551.
    [40] 赵冰, 金晶, 林郁郁, 李尚, 李焕龙, 张建超. 三水磷酸钾耦合CaO对樟木粉热解特性及NOx前体释放特性的影响[J]. 化工进展,2018,37(3):956−961.

    ZHAO Bing, JIN Jing, LIN Yu-yu, LI Shang, LI Huan-long, ZHANG Jian-chao. Interconnection effect of CaO and tripotassium phosphate trihydrate on the pyrolysis characteristics of camphor powder and the release of NOx precursor[J]. Chem Ind Eng Prog,2018,37(3):956−961.
    [41] 庄修政, 宋艳培, 阴秀丽, 吴创之. 有机废弃物在水热-热解耦合过程中NOx前驱物的释放机制研究[J]. 燃料化学学报,2020,48(5):551−561.

    ZHUANG Xiu-zheng, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Formation mechanism of NOx precursor during organic waste pyrolysis coupled with hydrothermal pretreatment[J]. J Fuel Chem Technol,2020,48(5):551−561.
    [42] 何清, 程晨, 龚岩, 丁路, 于广锁. 水热炭化生物质与煤共热解和共气化特性研究[J]. 燃料化学学报,2022,50(6):664−673.

    HE Qing, CHENG Chen, GONG Yan, DING Lu, YU Guang-suo. Study on co-pyrolysis and co-gasification of hydrothermal carbonized biomass and coal[J]. J Fuel Chem Technol,2022,50(6):664−673.
    [43] REN Q, ZHAO C. NOx and N2O precursors from biomass pyrolysis: Role of cellulose, hemicellulose and lignin[J]. Environ Sci Technol,2013,47(15):8955−8961.
    [44] 吕雪松, 杨昌炎, 姚建中, 林伟刚. 生物质热解过程中含氮污染物前驱体的转化规律[C]. 2004年中国生物质能技术与可持续发展研讨会, 2004, 178−185.

    LV Xue-song, YANG Chang-yan, YAO Jian-zhong, LIN Wei-gang. Transformation patterns of nitrogenous pollutant precursors during biomass pyrolysis[C]. CN Bio Nrg Technol Dev seminar, 2004, 178−185.
    [45] CHEN H, SI Y, CHEN Y, YANG H, CHEN D, CHEN W. NOx precursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel,2017,187:367−375. doi: 10.1016/j.fuel.2016.09.075
    [46] REN Q, ZHAO C. NOx and N2O precursors from biomass pyrolysis: Nitrogen transformation from amino acid[J]. Environ Sci Technol,2012,46(7):4236−4240. doi: 10.1021/es204142e
    [47] GLUSHKOV D O, NYASHINA G S, ANAND R, STRIZHAK P A. Composition of gas produced from the direct combustion and pyrolysis of biomass[J]. Process Saf Environ,2021,156:43−56. doi: 10.1016/j.psep.2021.09.039
    [48] RATH S S, RAO D S, TRIPATHY A, BISWAL S K. Biomass briquette as an alternative reductant for low grade iron ore resources[J]. Biomass Bioenergy,2018,108:447−454. doi: 10.1016/j.biombioe.2017.10.045
    [49] LIU S, GAO Y, WANG L, CHEN X. Study on combustion mechanism of biomass briquette and its application[J]. IOP Conference Series: EES,2019,227:1−8.
    [50] 马毓聪. 生物质燃料燃烧NO排放特性研究[D]. 杭州: 浙江大学, 2021.

    MA Yu-cong. NO emission characteristics of biomass fuel combustion[D]. Hangzhou: Zhejiang University, 2021.
    [51] 杨钦. 生物质的燃烧、释放与结渣特性研究[D]. 北京: 华北电力大学, 2021.

    HAN Qing. Research on the combustion, release and slagging characteristics of biomass[D]. Beijing: North China Electric Power University, 2021.
    [52] 王俊芳. 生物质秸秆露天焚烧污染物排放特性及排放规模研究[D]. 杭州: 浙江大学, 2017.

    WANG Jun-fang. Study on pollutant emissions and emission inventory from open burning of biomass straw[D]. Hangzhou: Zhejiang University, 2017.
    [53] 罗意然, 韦进毅, 郭送军, 陈来国, 莫招育. 广西典型生物质燃烧气态污染物排放特征[J]. 农业环境科学学报,2022,41(4):888−897.

    LUO Yi-ran, WEI Jin-yi, GUO Song-jun, CHEN Lai-guo, MO Zhao-yu. Emission characteristics of typical biomass combustion pollutants in Guangxi province[J]. J Agro-Environ Sci,2022,41(4):888−897.
    [54] 韩志诚. 上海市环境保护局、质量技术监督局联合发布新的《锅炉大气污染物排放标准》[J]. 天津造纸,2014,36(4):47.

    HAN Zhi-cheng. Shanghai Environmental Protection Bureau and Bureau of Quality and Technical Supervision jointly issue new "Emission Standards for Air Pollutants from Boilers"[J]. Tianjin Paper,2014,36(4):47.
    [55] 聂虎, 余春江, 柏继松, 李廉明, 秦建光, 方梦祥. 生物质燃烧中硫氧化物和氮氧化物生成机理研究[J]. 热力发电,2010,39(9):21−34.

    NIE Hu, YU Chun-jiang, BAI Ji-song, LI Lian-ming, QIN Jian-guang, FANG Meng-xiang. Study on formation mechanisms of sulphide and nitrogen oxides in combustion of biomass[J]. Thermal Power Gener,2010,39(9):21−34.
    [56] LI P-W, CHYANG C-S, NI H-W. An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion[J]. Energy,2018,154:319−327. doi: 10.1016/j.energy.2018.04.141
    [57] GLARBORG P. Fuel nitrogen conversion in solid fuel fired systems[J]. Prog Energy Combust,2003,29(2):89−113. doi: 10.1016/S0360-1285(02)00031-X
    [58] 许旭斌, 许紫阳, 王锋涛, 杨硕, 冯斌. 恒温下玉米芯焦与煤混燃过程中NOx释放特性研究[J]. 太阳能学报,2021,42(11):387−394.

    XU Xu-bin, XU Zi-yang, WANG Feng-tao, YANG Shuo, FENG Bin. Study of NOx emission characteristics during the mixing of corn cob coke and coal at constant temperature[J]. Acta Energ Sol Sin,2021,42(11):387−394.
    [59] KHAN A, DE JONG W, JANSENS PJ, SPLIETHOFF H. Biomass combustion in fluidized bed boilers: Potential problems and remedies[J]. Fuel Process Technol,2009,90(1):21−50. doi: 10.1016/j.fuproc.2008.07.012
    [60] KNUDSEN J N, JENSEN P A, LIN W G, FRANDSEN F J, DAM-JOHANSEN K. Sulfur transformations during thermal conversion of herbaceous biomass[J]. Energy Fuels,2004,18(3):810−819. doi: 10.1021/ef034085b
    [61] HAN K H, GAO J, QI J H. The study of sulphur retention characteristics of biomass briquettes during combustion[J]. Energy,2019,186:66−75.
    [62] 田甜. 生物质矿石炼铁技术初步研究[D]. 武汉: 华中科技大学, 2007.

    TIAN Tian. A thesis submitted in partial fulfillment of the requirements for the degree of master of engineering[D]. Wuhan: Huazhong University of Sciene and Technology, 2007.
    [63] 王国强. 高炉喷吹秸秆生物质燃烧特性分析[J]. 山东冶金,2021,43(2):53−55.

    WANG Guo-qiang. Analysis of the biomass combustion characteristics of blast furnace blast straw[J]. Shandong Metall,2021,43(2):53−55.
    [64] 韩奎华, 武鹏魁, 刘文洋, 王伟. 兰炭与秸秆混合燃料燃烧污染物排放和灰熔融性实验研究[J]. 洁净煤技术,2023,29(1):108−116.

    HAN Kui-hua, WU Peng-kui, LIU Wen-yang, WANG Wei. Experimental study on combustion pollutant emission and ash fusibility of blended fuel of Semi-coke and straw[J]. Clean Coal Technol,2023,29(1):108−116.
    [65] ZULKANIA A, ROCHMADI R, HIDAYAT M, CAHYONO R B. Reduction reactivity of low grade iron ore-biomass pellets for a sustainable ironmaking process[J]. Energies,2021,15(1):137. doi: 10.3390/en15010137
    [66] 王朋. 生物质半焦应用于高炉喷吹的基础研究[D]. 北京: 北京科技大学, 2019.

    WANG Peng. Fundamental research on the injection of biomass char into blast furnace[D]. Beijing: University of Science and Technology Beijing, 2019.
    [67] 曾宪灿. 热解竹炭用作高炉喷吹燃料的实验研究[D]. 武汉: 武汉科技大学, 2015.

    ZENG Xian-can. Experimental research of pyrolysis bamboo charcoal as fuel injection into blast furnace[D]. Wuhan: Wuhan University of Science and Technology, 2015.
    [68] 刘竹林, 蒋友源, 郑林. 生物质炭添加比例对煤粉燃烧性能的影响[J]. 湖南工业大学学报,2020,34:85−91.

    LIU Zhu-lin, JIANG You-yuan, ZHENG Lin. Effect of biochar addition ratio on combustion performance of pulverized coal[J]. J Hunan Univ Technol,2020,34:85−91.
    [69] 王林. 高炉喷吹用的秸秆炭制备及表征[D]. 长沙: 中南大学, 2013.

    WANG Lin. Preparation and characterization of stalk char used in the blast furnace for injection[D]. Changsha: Central South University, 2013.
    [70] 马辉, 汪潮洋, 韩辉, 杨先亮, 秦志明, 雷鸣. 多种生物质与煤掺混燃烧特性研究[J]. 热力发电,2022,51(1):167−172.

    MA Hui, WANG Chao-yang, HAN Hui, YANG Xian-liang, QIN Zhi-ming, LEI Ming. Study on co-combustion characteristics of biomass mixed with coal[J]. Thermal Power Gener,2022,51(1):167−172.
    [71] JIN H X, WU F Z, LI S E. Combustion characteristics of coal and biomass blends with adding absorbing sulfur agent[J]. Adv Mater,2011,236:441−447.
    [72] MOUSA E, WANG C, RIESBECK J, LARSSON M. Biomass applications in iron and steel industry: An overview of challenges and opportunities[J]. Renewable Sustainable Energy Rev,2016,65:247−266.
    [73] LIU Y, SHEN Y. Modelling and optimisation of biomass injection in ironmaking blast furnaces[J]. Prog Energy Combust,2021,87:952.
    [74] LIU X, CHEN M, WEI Y. Combustion behavior of corncob/bituminous coal and hardwood/bituminous coal[J]. Renew Energ,2015,81:355−365. doi: 10.1016/j.renene.2015.03.021
    [75] MACHADO J G M S, OSÓRIO E, VILELA A C F, BABICH A, SENK D, GUDENAU H W. Reactivity and conversion behaviour of brazilian and imported coals, charcoal and blends in view of their injection into blast furnaces[J]. Steel Res Int,2010,81(1):9−16. doi: 10.1002/srin.200900093
    [76] 朱成成, 邢献军, 陈泽宇, 糜梦星, 张学飞. O2/CO2/N2气氛下玉米秸秆混煤燃烧特性及动力学分析[J]. 太阳能学报,2021,42(1):385−391.

    ZHU Cheng-cheng, XING Xian-jun, CHEN Ze-yu, MI Meng-xing, ZHANG Xue-fei. Combustion characteristics and kinetics of corn stover blended coal under O2/CO2/N2 atmosphere[J]. Acta Energ Sol Sin,2021,42(1):385−391.
    [77] 焦庆瑞. 煤与生物质混合燃烧及其灰熔融特性研究[D]. 重庆: 重庆大学, 2021.

    JIAO Qing-rui. Study on the Co-combustion and ash fusion characteristic of coal and Biomass[D]. Chongqing: Chongqing University, 2021.
    [78] 刘国庆. 干熄焦除尘灰及松木屑作为高炉辅助喷吹燃料的燃烧特性研究[D]. 重庆: 重庆大学, 2016.

    LIU Guo-qing. Combustion characteristics of the coke dry quenching ash and pine sawdust as blast auxiliary fuel injection[D]. Chongqing: Chongqing University, 2016.
    [79] FELICIANO-BRUZUAL C, MATHEWS J A, BIO-PCI. Charcoal injection in blast furnaces: State of the art and economic perspectives[J]. Rev Metal Madrid,2014,49(6):458−468.
    [80] WIJAYANTA A T, ALAM M S, NAKASO K, FUKAI J, KUNITOMO K, SHIMIZU M. Combustibility of biochar injected into the raceway of a blast furnace[J]. Fuel Process Technol,2014,117:53−59. doi: 10.1016/j.fuproc.2013.01.012
    [81] BABICH A, SENK D, FERNANDEZ M. Charcoal behaviour by its injection into the modern blast furnace[J]. Isij Int,2010,50(1):81−88. doi: 10.2355/isijinternational.50.81
    [82] SOLAR J, HIPPE F, BABICH A, CABALLERO B M, DE MARCO RODRÍGUEZ I, BARRIOCANAL C. Conversion of injected forestry waste biomass charcoal in a blast furnace: influence of pyrolysis temperature[J]. Energ Fuel,2020,35(1):529−538.
    [83] 徐润生, 郑恒, 王炜, 姜曦, 刘全国, 薛正良. 炭化温度对高炉喷吹用竹炭微观结构的影响[J]. 钢铁研究学报,2018,30(7):515−522.

    XU Run-sheng, ZHENG Heng, WANG Wei, JIANG Xi, LIU Quan-guo, XUE Zheng-liang. Effect of carbonization temperature on microstructure characters of bamboo char used for blast furnace injection[J]. J Iron Steel Res,2018,30(7):515−522.
    [84] 郑伟成, CHARLES XC, 魏汝飞, 钱立新, 龙红明, 李家新. 高炉喷吹生物炭研究进展[J]. 钢铁研究学报,2021,33(1):1−8.

    ZHENG Wei-cheng, CHARLES XC, WEI Ru-fei, QIAN Li-xin, LONG Hong-ming, LI Jia-xin. Injection of biochar into blast furnace: Progress and prospects[J]. J Iron Steel Res,2021,33(1):1−8.
    [85] CAMPOS D E ASSIS C F, LEAL E M, ASSIS P S, NASCIMENTO L M, KONISHI H, USUI T. Experimental analysis of injecting different blends of biomass materials and charcoal in a blast furnace[J]. Ironmak Steelmak,2019,47(3):284−289.
    [86] 王颖钰, 潘建, 朱德庆, 王林. 高炉喷吹用秸秆炭性能表征[J]. 钢铁研究学报,2017,29(11):892−899.

    WANG Ying-yu, PAN Jian, ZHU De-qing, WANG Lin. Performance characterization of straw charcoal used for blast furnace injection[J]. J Iron Steel Res,2017,29(11):892−899.
    [87] 李冲. 花生壳生物炭用作高炉喷吹燃料的实验研究[D]. 武汉: 武汉科技大学, 2018.

    LI Chong. Experimental research of peanut shell biomass charcoal for blast furnace fuel injection[D]. Wuhan: Wuhan University of Science and Technology, 2018.
    [88] 刘竹林, 蒋友源, 寿擎, 汪雄, 张波. 高炉混合喷吹用生物质燃料可磨性及燃烧性能分析[J]. 中国冶金,2020,30(3):8−12.

    LIU Zhu-lin, JIANG You-yuan, SHOU Qing, WANG Xiong, ZHANG Bo. Analysis on grindability and combustion performance of biomass fuel for mixed injection of blast furnace[J]. Chin Metall,2020,30(3):8−12.
    [89] CASTRO J A, ARAÚJO G D M, DA MOTA I D O, SASAKI Y, YAGI J-I. Analysis of the combined injection of pulverized coal and charcoal into large blast furnaces[J]. J Mater Res Technol,2013,2(4):308−314. doi: 10.1016/j.jmrt.2013.06.003
    [90] NGUYEN H K, MOON J-H, JO S-H, PARK S J, SEO M W, RA H W. Oxy-combustion characteristics as a function of oxygen concentration and biomass co-firing ratio in a 0.1MWth circulating fluidized bed combustion test-rig[J]. Energy,2020,196:117−120.
    [91] TANG R, LIU Q, ZHONG W, LIAN G, YU H. Experimental study of SO2 emission and sulfur conversion characteristics of pressurized oxy-fuel Co-combustion of coal and biomass[J]. Energy Fuels,2020,34(12):16693−16704. doi: 10.1021/acs.energyfuels.0c03116
    [92] 蒲舸, 谭波. 生物质和高硫劣质煤混烧灰熔融特性研究[J]. 中国电机工程学报,2011,31(23):108−114.

    PU Ke, TAN Bo. Study on the melting characteristics of ash mixed with biomass and high sulphur poor quality coal[J]. Proc CSEE,2011,31(23):108−114.
    [93] KUZNETSOV G V, JANKOVSKY S A, TOLOKOLNIKOV A A, ZENKOV A V. Mechanism of sulfur and nitrogen oxides suppression in combustion products of mixed fuels based on coal and wood[J]. Combust Sci Technol,2018,191(11):2071−2081.
    [94] ZHOU H, JENSEN A, GLARBORG P, KAVALIAUSKAS A. Formation and reduction of nitric oxide in fixed-bed combustion of straw[J]. Fuel,2006,85(5/6):705−716. doi: 10.1016/j.fuel.2005.08.038
    [95] 林俊杰. 煤/生物质流化床富氧燃烧过程氮迁移转化特性研究[D]. 杭州: 浙江大学, 2021.

    LIN Jun-jie. Experiment of nitrogen transformation on coal/biomass combustion in fluidized bed under O2/CO2 atmosphere[D]. Hangzhou: Zhejiang University
    [96] WANG X, REN Q, LI W, LI S, LU Q. Thermogravimetry-mass spectrometry analysis of nitrogen transformation during oxy-fuel combustion of coal and biomass mixtures[J]. Energ Fuel,2015,29(4):2462−2470. doi: 10.1021/acs.energyfuels.5b00019
    [97] 全红. 直接还原炼铁工艺技术综述[J]. 云南冶金,2007,(2):57−61. doi: 10.3969/j.issn.1006-0308.2007.02.009

    QUAN Hong. Summary on direct reduction on process for iron smelting[J]. Yunnan Metall,2007,(2):57−61. doi: 10.3969/j.issn.1006-0308.2007.02.009
    [98] 应自伟, 储满生, 唐珏, 柳政根, 周渝生. 非高炉炼铁工艺现状及未来适应性分析[J]. 河北冶金,2019,(6):1−7 + 31.

    YING Zi-wei, CHU Man-sheng, TANG Yu, LIU Zheng-gen, ZHOU Yu-sheng. Current situation and future adaptability analysis of non-blast furnace ironmaking process[J]. Hebei Metall,2019,(6):1−7 + 31.
    [99] 胡正文, 张建良, 左海滨, 苏步新, 李净. 生物质能辅助炼铁状况及前景[C]. 无锡: 2012年全国炼铁生产技术会议暨炼铁学术年会, 2012, 671−677.

    HU Zheng-wen, ZHANG Xue-liang, ZUO Hai-bin, SU Bu-xin, LI Jing. Situation and outlook of biomass energy auxiliary ironmaking[C]. Wuxi: National Ironmak Prod Technol Conf Ann Ironmak Ac Conf, 2012, 671−677.
    [100] 刘竹林, 王发龙, 王建丽, 高泽平, 刘汉辉. 农作物废弃物含碳球团还原行为研究[J]. 湖南工业大学学报,2014,28(1):87−92. doi: 10.3969/j.issn.1673-9833.2014.01.018

    LIU Zhu-lin, WANG Fa-long, WANG Jian-li, GAO Ze-ping, LIU Han-hui. Study on the reduction process of carbon-bearing pellets from agricultural waste[J]. J Hunan Univ Technol,2014,28(1):87−92. doi: 10.3969/j.issn.1673-9833.2014.01.018
    [101] 李大伟, 岳昌盛, 韩宏亮, 段东平. 以秸秆纤维废弃物为还原剂生产金属化球团[J]. 环境工程,2016,34(2):119−122.

    LI Da-wei, YUE Chang-sheng, HAN Hong-liang, DUAN Dong-ping. Application of Straw Fiber as the Reducing Agent in Production of Metallic Pellets[J]. Environmental Engineering,2016,34(2):119−122.
    [102] GRIESSACHER T, ANTREKOWITSCH J, STEINLECHNER S. Charcoal from agricultural residues as alternative reducing agent in metal recycling[J]. Biomass Bioenergy,2012,39:139−146. doi: 10.1016/j.biombioe.2011.12.043
    [103] YUAN P, SHEN B, DUAN D, ADWEK G, MEI X, LU F. Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process[J]. Energy,2017,141:472−482. doi: 10.1016/j.energy.2017.09.058
    [104] FU J-X, ZHANG C, HWANG W-S, LIAU Y-T, LIN Y-T. Exploration of biomass char for CO2 reduction in RHF process for steel production[J]. Int J Greenh Gas Con,2012,8:143−149. doi: 10.1016/j.ijggc.2012.02.012
    [105] YANG J, MORI T, KUWABARA M. Mechanism of carbothermic reduction of hematite in hematite-carbon composite peflets[J]. Isij Int,2007,47(10):1394−1400. doi: 10.2355/isijinternational.47.1394
    [106] 刘颖. 转底炉内冶金粉尘含碳球团直接还原过程数学模型研究[D]. 北京: 北京科技大学, 2015.

    LIU Ying. Mathematical model investigation of direct reduction of carbon-containing pellets made of metallurgical dust in a rotary hearth furnace[D]. Beijing: University of Science and Technology Beijing, 2015.
    [107] UBANDO A T, CHEN W-H, ONG H C. Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions[J]. Energy,2019,180:968−977. doi: 10.1016/j.energy.2019.05.149
    [108] 苑鹏, 岳昌盛, 韩宏亮, 段东平. 生物质还原剂对转底炉直接还原工艺的影响[J]. 固体废物处理与处置,2015,33(9):113−117.

    YUAN Peng, YUE Chang-sheng, HAN Hong-liang, DUAN Dong-ping. Impact of biomass reducing agents on RHF direct reduction process[J]. Solid Waste Treatment Disposal,2015,33(9):113−117.
    [109] ZUO Z, YU Q, XIE H, WANG K, LIU S, YANG F. Mechanical and reduction characteristics of cold-pressed copper slag pellets composited within biomass and lignite[J]. Renewable Energy,2018,125:206−224. doi: 10.1016/j.renene.2018.02.057
    [110] 苑鹏, 韩宏亮, 段东平. 不同还原剂用于转底炉直接还原工艺的试验[J]. 河北联合大学学报,2015,37(3):52−58.

    YUAN Peng, HAN Hong-liang, DUAN Dong-ping. Experiments with different reductants for direct reduction processes in rotary bottom furnaces[J]. J Hebei Union Univ,2015,37(3):52−58.
    [111] 李大伟. 秸秆纤维用于转底炉直接还原工艺的基础研究[D]. 唐山: 华北理工大学, 2016.

    LI Da-wei. Basic research of straw fiber for rotary hearth furnace direct reduction process[D]. Tangshan: North China University of Science and Technology, 2016.
    [112] CHOLICO-GONZÁLEZ D, LARA N O, MIRANDA M A S, ESTRELLA R M, GARCÍA R E, PATIÑO C A L. Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents[J]. IJMMM,2021,28(4):603−611.
    [113] 罗思义, 马晨, 孙鹏鹏. 铁矿-生物质复合球团还原行为及还原动力学[J]. 工程科学学报,2015,37(2):150−156.

    LUO Si-yi, MA Chen, SUN Peng-peng. Reduction behavior and reaction kinetics of iron ore-biomass composite pellets[J]. CEJ,2015,37(2):150−156.
    [114] 张玉洁, 王焦飞, 卫俊涛, 白永辉, 宋旭东, 苏暐光. 碱金属赋存形态对水稻秸秆热解过程的影响机制[J]. 燃料化学学报,2021,49(6):752−758. doi: 10.1016/S1872-5813(21)60025-7

    ZHANG Yu-jie, WANG Jiao-fei, WEI Jun-tao, BAI Yong-hui, SONG Xu-dong, SU Wei-guang. Effect of alkali metal occurrence on the pyrolysis behavior of rice straw[J]. J Fuel Chem Technol,2021,49(6):752−758. doi: 10.1016/S1872-5813(21)60025-7
    [115] 韩旭, 张岩丰, 姚丁丁, 钱柯贞, 杨海平, 王贤华. 生物质气化过程中碱金属和碱土金属的析出特性研究[J]. 燃料化学学报,2014,42(7):792−798.

    HAN Xu, ZHANG Yan-feng, YAO Ding-ding, QIAN Ke-zhen, YANG Hai-ping, WANG Xian-hua. Releasing behavior of alkali and alkaline e arth me tals during biomass gasification[J]. J Fuel Chem Technol,2014,42(7):792−798.
    [116] 蒋武锋, 李运刚, 赵利国, 吕庆, 刘玉全. 粘结剂对含碳球团还原的影响[J]. 钢铁研究学报,2000,(4):1−4. doi: 10.3321/j.issn:1001-0963.2000.04.001

    JIANG Wu-feng, LI Yun-gang, ZHAO Li-guo, LV Qing, LIU Yu-quan. Effect of binder on the reduction of pellet containing coal char[J]. J Iron Steel Res,2000,(4):1−4. doi: 10.3321/j.issn:1001-0963.2000.04.001
    [117] GUO D, HU M, PU C, XIAO B, HU Z, LIU S. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas[J]. Int J Hydrogen Energy,2015,40(14):4733−4740. doi: 10.1016/j.ijhydene.2015.02.065
    [118] DAS D, ANAND A, GAUTAM S, RAJAK V K. Assessment of utilization potential of biomass volatiles and biochar as a reducing agent for iron ore pellets[J]. Environ Technol,2022,1−12.
    [119] LUO S, ZHOU Y, YI C. Two-step direct reduction of iron ore pellets by utilization of biomass: Effects of preheating temperature, pellet size and composition[J]. JRSE,2013,5(6):063114.
    [120] 杨乐彪. 含碳球团还原过程中传热行为的研究[D]. 马鞍山: 安徽工业大学, 2017.

    HAN Le-biao. Study on heat transfer behavior of iron ore and coal pellets during reduction[D]. Maanshan: ANHUI University of Technology, 2017.
    [121] UEKI Y, YOSHIIE R, NARUSE I, OHNO K-I, MAEDA T, NISHIOKA K. Reaction behavior during heating biomass materials and iron oxide composites[J]. Fuel,2013,104:58−61. doi: 10.1016/j.fuel.2010.09.019
    [122] 熊玮, 王国强, 周绍轩. 秸秆替代煤高炉喷吹的能源消耗及环境影响比较[J]. 环境科学与技术,2013,36(4):137−140.

    XIONG Wei, WANG Guo-qiang, ZHOU Shao-xuan. Comparison of energy consumption and environmental impact of replacement of coal with straw injection into blast furnace[J]. EST,2013,36(4):137−140.
    [123] JAHANSHAHI S, MATHIESON J G, SOMERVILLE M A, HAQUE N, NORGATE T E, DEEV A. Development of low-emission integrated steelmaking process[J]. J Sustain Metall,2015,1(1):94−114. doi: 10.1007/s40831-015-0008-6
    [124] JHA G, SOREN S, MEHTA K D. Life cycle assessment of sintering process for carbon footprint and cost reduction: A comparative study for coke and biomass-derived sintering process[J]. J Clean Pr,2020,259:880−889.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  219
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-29
  • 修回日期:  2023-01-09
  • 录用日期:  2023-02-02
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回