留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO耦合掺氮生物质炭对NO吸附的机理研究

王莹 顾明言 陈萍 汪辉春 张萌 汪一

王莹, 顾明言, 陈萍, 汪辉春, 张萌, 汪一. CaO耦合掺氮生物质炭对NO吸附的机理研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1173-1181. doi: 10.19906/j.cnki.JFCT.2023020
引用本文: 王莹, 顾明言, 陈萍, 汪辉春, 张萌, 汪一. CaO耦合掺氮生物质炭对NO吸附的机理研究[J]. 燃料化学学报(中英文), 2023, 51(8): 1173-1181. doi: 10.19906/j.cnki.JFCT.2023020
WANG Ying, GU Ming-yan, CHEN Ping, WANG Hui-chun, ZHANG Meng, WANG Yi. Study on the mechanism of NO adsorption by CaO coupled nitrogen-doped biochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1173-1181. doi: 10.19906/j.cnki.JFCT.2023020
Citation: WANG Ying, GU Ming-yan, CHEN Ping, WANG Hui-chun, ZHANG Meng, WANG Yi. Study on the mechanism of NO adsorption by CaO coupled nitrogen-doped biochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1173-1181. doi: 10.19906/j.cnki.JFCT.2023020

CaO耦合掺氮生物质炭对NO吸附的机理研究

doi: 10.19906/j.cnki.JFCT.2023020
基金项目: 国家自然科学基金青年基金(52206129),安徽省自然科学基金青年项目(2208085QE158),煤燃烧国家重点实验室开放基金(FSKLCCA2206)和2022年安徽工业大学“大学生创新创业训练计划”(S202210360403)资助
详细信息
    通讯作者:

    Tel:18395581520, E-mail:chp0109@126.com

  • 中图分类号: TK6

Study on the mechanism of NO adsorption by CaO coupled nitrogen-doped biochar

Funds: The project was supported by National Natural Science Foundation of China Youth Program (52206129), Natural Science Foundation of Anhui Province (2208085QE158), State Key Laboratory of Coal Combustion Open Fund (FSKLCCA2206) and 2022 Anhui University of Technology “Innovation and Entrepreneurship Training Program for College Students” (S202210360403).
  • 摘要: 本研究采用密度泛函理论,探究了不同含氮生物质炭以及CaO耦合掺氮生物质炭对NO吸附性能的影响。理论计算结果表明,掺氮生物质炭在N-down吸附方式下对NO吸附效果更好,且掺杂N-5生物质炭(CN-5)较其含氮基团生物质炭对NO的吸附能更高,其吸附能为−41.22 kJ/mol。CaO显著提升了生物炭对NO的吸附能力,且CaO耦合含N-5生物质炭(CaO/CN-5)的基底作为电子供体为NO提供更多电荷,其吸附能比CN-5高出216.862 kJ/mol,CaO和N-5基团耦合作用下显著提高生物炭的吸附性能。生物炭表面NO的吸附量会随着温度的升高而减少,增加含N-5生物质炭的数量对NO的吸附更有利,而CaO的耦合进一步提高了CN-5表面NO的吸附量,在273 K时,CaO/CN-5体系的吸附量可以达2.846 mmol/g。
  • FIG. 2583.  FIG. 2583.

    FIG. 2583.  FIG. 2583.

    图  1  掺氮生物质炭模型结构示意图

    Figure  1  Model structure of nitrogen-doped biochar

    图  2  NO在生物炭及掺氮生物炭表面不同的吸附构型

    Figure  2  Different adsorption configurations of NO on the surface of biochar and nitrogen-doped biochar

    图  3  NO以N-down吸附方式下CN-5的PDOS谱图

    Figure  3  PDOS diagram of CN-5 under NO-down adsorption mode

    图  4  CaO/BC及CaO/CN-5的主视图与左视图

    Figure  4  Main view and left view of CaO/BC and CaO/CN-5

    图  5  NO及作用在CaO/BC和CaO/CN-5表面的相关原子编号

    Figure  5  NO and the associated atomic numbers acting on the surface of CaO/BC and CaO/CN-5

    图  6  掺氮生物质炭与CaO耦合掺氮生物质炭表面NO的吸附量

    Figure  6  Adsorption capacity of nitrogen-doped biochar and CaO-coupled nitrogen-doped biochar NO

    (a): Nitrogen-doped biochar; (b): CaO coupled nitrogen-doped biochar

    表  1  吸附体系中各种基元数量

    Table  1  Number of various primitives in the adsorption system

    Number of
    primitives
    Adsorption system
    CHNCN-5CN-6CG-NCN-X
    BC90000
    N-5918999
    N-6991899
    G-N999189
    N-X999918
    下载: 导出CSV

    表  2  NO在生物炭及掺氮生物炭表面的吸附能

    Table  2  Adsorption energy of NO on the surface of biochar and nitrogen-doped biochar

    Adsorption
    structure
    Side-on Eads /
    (kJ·mol−1)
    N-down Eads /
    (kJ·mol−1)
    BC−15.1393.94
    CN-6136.59−32.04
    CN-5−18.79−41.22
    CG-N−5.49−5.49
    CN-X180.11−37.62
    下载: 导出CSV

    表  3  CaO耦合BC与耦合掺CN-5表面NO的吸附能

    Table  3  Adsorption energy of CaO-coupled BC and coupled CN-5 surface NO

    Adsorption structureEads /(kJ·mol−1)
    CaO/BC−248.627
    CaO/CN-5−258.082
    下载: 导出CSV

    表  4  CaO/BC相关原子Mulliken电荷

    Table  4  CaO/BC related atom Mulliken charge changes

    AtomspdTotalCharge /e
    N21.663.340.005.000.00
    O761.844.580.006.42−0.42
    O271.864.820.006.68−0.68
    Ca292.196.000.708.881.12
    Ca412.196.000.698.841.16
    下载: 导出CSV

    表  5  CaO/CN-5相关原子Mulliken电荷

    Table  5  CaO/CN-5 related atom Mulliken charge changes

    AtomspdTotalCharge /e
    N21.683.400.005.09−0.09
    O761.854.670.006.52−0.52
    O271.864.830.006.69−0.69
    Ca292.196.000.688.861.14
    Ca412.196.000.698.841.16
    下载: 导出CSV
  • [1] 武润平. 多孔碳材料的合成及其对NO和CO2的吸附性能研究[D]. 北京: 北京工业大学, 2021.

    WU Run-ping. Synthesis of porous carbon materials and their adsorption properties on NO and CO2[D]. Beijing: Beijing University of Technology, 2021.
    [2] KOU J, SUN L. Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: Efficient adsorbents for selective CO2 capture[J]. Ind Eng Chem Res,2016,10916−10925.
    [3] JIANG Q, RENTSCHLER J, SETHIA G, WEINMAN S, PERRONE R, LIU K. Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process[J]. Chem Eng J,2013,230(16):380−388.
    [4] SUMIDA K, ROGOW D, MASON J, MCDONALD T. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev,2012,112(2):724−781.
    [5] SUN L, KING Y , SHI Y, JIANG Y , LIU X. Highly selective capture of the greenhouse gas CO2 in polymers[J]. ACS Sustainable Chem Eng,2015,3(12):3077−3085.
    [6] ZHANG X, GAO B, CREAMER A, CAO C LI Y. Adsorption of VOCs onto engineered carbon materials: A review[J]. J Hazard Mater,2017,338:102−123. doi: 10.1016/j.jhazmat.2017.05.013
    [7] QI J, LI Y, WEIi G, LI J, SUN X, SHEN J, HAN W, WANG L. Nitrogen doped porous hollow carbon spheres for enhanced benzene removal[J]. Sep Purif Technol,2017,188:112−118. doi: 10.1016/j.seppur.2017.07.021
    [8] KIM K, KANG C, YOU Y, CHUANG MC, WOO M. Adsorption-desorption characteristics of VOCs over impregnated activated carbons[J]. Catal Today,2006,111(3/4):223−228.
    [9] ZHOU K, MA W, ZENG Z, CHEN R, LI L. Waste biomass-derived oxygen and nitrogen co-doped porous carbon/MgO composites as superior acetone adsorbent: Experimental and DFT study on the adsorption behavior[J]. Chem Eng J,2020,387:124173. doi: 10.1016/j.cej.2020.124173
    [10] XIE Y, CHEN Y, LIU L, TAO P, FAN M, XU N, SHEN X, YAN C. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications[J]. Adv Mater,2017,29(35):1702268. doi: 10.1002/adma.201702268
    [11] YANG W, ZHOU J, WANG S, ZHANG, W, WANG Z, LV F, WANG K, SUN Q, GUO S. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage[J]. Energy Environ Sci,2019,12:1605−1612. doi: 10.1039/C9EE00536F
    [12] PROMTHONG N, TABTIMSAI C, RAKRAI W, WANNO B. Transition metal-doped graphene nanoflakes for CO and CO2 storage and sensing applications: A DFT study[J]. Struct Chem,2020,31:2237−2247. doi: 10.1007/s11224-020-01579-9
    [13] BO Z, GUO X, WEI X, YANG H, YAN J, CEN K. Density functional theory calculations of NO2 and H2S adsorption on the group 10 transition metal (Ni, Pd and Pt) decorated graphene[J]. Phys E,2019,109:156−163. doi: 10.1016/j.physe.2019.01.012
    [14] SHOKUHI RAD A, ZAREYEE D. Adsorption properties of SO2 and O3 molecules on Pt-decorated graphene: A theoretical study[J]. Vac,2016,130:113−118. doi: 10.1016/j.vacuum.2016.05.009
    [15] LI Y, XING B, WANG X, WANG K, ZHUN L, WANG S. Nitrogen-doped hierarchical porous biochar derived from corn stalks for phenol-enhanced adsorption[J]. Energy Fuels,2019,33(12):12459−12468. doi: 10.1021/acs.energyfuels.9b02924
    [16] LIAN F, CUI G, LIU Z, DUO L, ZHANG G, XING B. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity[J]. J Environ Manage,2016,176:61−68. doi: 10.1016/j.jenvman.2016.03.043
    [17] LIANG H, SUN R, SONG B, SUN Q, PENG P, SHE D. Preparation of nitrogen-doped porous carbon material by a hydrothermal-activation two-step method and its high-efficiency adsorption of Cr(VI)[J]. J Hazard Mater,2020,387:121987. doi: 10.1016/j.jhazmat.2019.121987
    [18] FENG D, GUO D, ZHANG Y, SUN S, ZHAO Y, SHANG Q, SUN H, WU J, TAN H. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption[J]. Chem Eng J,2021,410:127707. doi: 10.1016/j.cej.2020.127707
    [19] CHEN L, JI Y, LIU X, MU L, ZHU J. Sorption mechanism of organic dyes on a novel self-nitrogen-doped porous graphite biochar: Coupling DFT calculations with experiments[J]. Chem Eng Sci,2021,242:116739. doi: 10.1016/j.ces.2021.116739
    [20] NG S, YILMAZ G, ONG W, HO G. One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage[J]. Appl Catal B: Environ,2018,220:533−541. doi: 10.1016/j.apcatb.2017.08.069
    [21] ZENG S, YAO Y, HUANG L, WU H, PENG B, ZHANG Q, LI X, YU L, LIU S, TU W, LAN T, ZENG X, ZHOU J. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres and theirapplication in lithium-sulfur batteries[J]. Chem Eur J,2018,24:1988−1997. doi: 10.1002/chem.201705211
    [22] LI P, LIU W, DENNIS J, ZENG C. Synthetic architecture of MgO/C nanocomposite from hierarchical-structured coordination polymer toward enhanced CO2 capture[J]. ACS Appl Mater Interfaces,2017,9:9592−9602. doi: 10.1021/acsami.6b14960
    [23] ZHOU K, MA W, ZENG Z, MA X, XU X, GUO Y, LI H, LI L. Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites[J]. Chem Eng J,2019,372:1122−1133. doi: 10.1016/j.cej.2019.04.218
    [24] DEJI R, VERMA A, CHOUDHARY B, SHARMA R. New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: A DFT approach[J]. J Mol Graphics Modell,2022,111:108109. doi: 10.1016/j.jmgm.2021.108109
    [25] LUO H, LI H, FU Q. Hydrogen adsorption on Be, Mg, Ca and Sr doped graphenes: The role of the dopant in the IIA main group[J]. Chem Phys Lett,2017,669:238−244. doi: 10.1016/j.cplett.2016.12.058
    [26] 刘磊, 金晶, 林郁郁, 侯封校. 钙元素对焦炭表面NO吸附行为的影响: 密度泛函理论研究[J]. 燃料化学学报,2015,43(12):1414−1419. doi: 10.3969/j.issn.0253-2409.2015.12.002

    LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on NO adsorption behavior on coke surface: Density functional theory study[J]. J Fuel Chem Technol,2015,43(12):1414−1419. doi: 10.3969/j.issn.0253-2409.2015.12.002
    [27] LU H, KHAN A, SMIRNIOTIS P. Relationship between structural properties and CO2 capture performance of CaO-based sorbents obtained from different organometallic precursors[J]. Ind Eng Chem Res,2008,47(16):6216−6220. doi: 10.1021/ie8002182
    [28] FLORIN N, HARRIS A. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles[J]. Chem Eng Sci,2009,64(2):187−191. doi: 10.1016/j.ces.2008.10.021
    [29] WU S, YANG J, BEUM T, KIM J. Evaluation of CO2 sorbents at high temperatures[C]//Symposium of Korea-India Adsorbent and Adsorption Process. Daejon, Korea, 2003: 119
    [30] 吴嵘, 吴素芳. 包硅改性纳米碳酸钙应用于高温CO2吸附的性能[J]. 化工学报,2006,57(7):1722−1726. doi: 10.3321/j.issn:0438-1157.2006.07.041

    WU Rong, WU Su-fang. Adsorption properties of silica-coated nano-calcium carbonate for high temperature CO2[J]. J Chem Eng,2006,57(7):1722−1726. doi: 10.3321/j.issn:0438-1157.2006.07.041
    [31] ISKENDER M. Enhanced adsorption of fluoroquinolone antibiotic on the surface of the Mg-, Ca-, Fe- and Zn-doped C60 fullerenes: DFT and TD-DFT approach[J]. Mater Today Commun,2022,31:103798. doi: 10.1016/j.mtcomm.2022.103798
    [32] LIU W, ZENG F, JIANG H, ZHANG X. Preparation of high adsorption capacity bio-chars from waste biomass[J]. Bioresour Technol,2011,102(17):8247−8252. doi: 10.1016/j.biortech.2011.06.014
    [33] YANG L, GUO M, QIAN Y, XU D, GHOLIZADEN M, KARNOWO, ZHANG H, HU X, ZHANG S. The effects of interactions between fiberboard-derived volatiles and glucose-derived biochar on N retention and char structure during the decoupled pyrolysis of fiberboard and glucose using a double-bed reactor[J]. Renewable Energy,2022,191:134−140. doi: 10.1016/j.renene.2022.04.005
    [34] XU L, WU C, LIUU P, BAI X, DU X, JIN P, YANG L, JIN X, SHI X, WANG Y. Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants[J]. Chem Eng J,2020,387:124065. doi: 10.1016/j.cej.2020.124065
    [35] 肖邦, 曹青, 马培勇, 毕海林, 李鹏程. 基于分子动力学模拟的羟基改性调控活性炭对甲苯吸附性能的作用机理研究[J]. 过程工程学报,2022,22(5):660−670. doi: 10.12034/j.issn.1009-606X.221125

    XIAO Bang, CAO Qing, MA Pei-yong, BI Hai-lin, LI Peng-cheng. Study on the mechanism of hydroxyl modification to regulate the adsorption performance of activated carbon p-toluene based on molecular dynamics simulation[J]. Chin J Chem Eng,2022,22(5):660−670. doi: 10.12034/j.issn.1009-606X.221125
    [36] DELEY B. From molecules to solids with the Dmol3 approach[J]. J Chem Phys,2000,113:7756−7764. doi: 10.1063/1.1316015
    [37] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77:3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [38] CHEN D, ZHANG N, TIAN J, LIU C, DU M. Pore modulation of metal-organic frameworks towards enhanced hydrothermal stability and acetylene uptake via incorporation of different functional brackets[J]. J Mater Chem A,2017,5(10):4861−4867. doi: 10.1039/C6TA10785K
    [39] 陈晓淇, 朱晓, 齐建荟, 牛胜利, 韩奎华. 焦炭–NO异相还原的密度泛函理论研究进展[J]. 燃料化学学报,2022,50(3):257−267. doi: 10.1016/S1872-5813(21)60148-2

    CHEN Xiao-qi, ZHU Xiao, QI Jian-hui, NIU Sheng-li, HAN Kui-hua. Research progress on density functional theory of coke–NO heterogeneous reduction[J]. J Fuel Chem Technol,2022,50(3):257−267. doi: 10.1016/S1872-5813(21)60148-2
    [40] LIU X, HAN Y, CHENG Y, XU G. Microwave-assisted ammonia modification of activated carbon for effective removal of phenol from wastewater: DFT and experiment study[J]. Appl Surf Sci,2020,518:146258. doi: 10.1016/j.apsusc.2020.146258
    [41] WANG W, FAN L, WANG G, LI Y. CO2 and SO2 sorption on the alkali metals doped CaO(100)surface: A DFT-D study[J]. Appl Surf Sci,2017,425:972−977. doi: 10.1016/j.apsusc.2017.07.158
    [42] XIN G, ZHAO P, ZHENG C. Theoretical study of different speciation of mercury adsorption on CaO (0 0 1) surface[J]. Proc Combust Inst,2009,32:2693−2699. doi: 10.1016/j.proci.2008.06.090
    [43] ABDEL AAL S, ABDEL HALIM W, SHALABI A. Cl2 adsorption on supported alkali metals and on the MgO and CaO (001) supports: A DFT study[J]. Solid State Commun.,2008,148:464−468. doi: 10.1016/j.ssc.2008.08.035
    [44] FAN Y, ZHOU Y, ZHU Z, DU W, LI L. Zerovalent selenium adsorption mechanisms on CaO Surface: DFT calculation and experimental study[J]. J Phys Chem A,2017,121(39):7385−7392. doi: 10.1021/acs.jpca.7b04672
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  150
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-03-02
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回