留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3C2辅助的Mo掺杂Zn0.5Cd0.5S双功能催化剂的制备及其光催化性能研究

牛杰 王亮 李春虎

牛杰, 王亮, 李春虎. Ti3C2辅助的Mo掺杂Zn0.5Cd0.5S双功能催化剂的制备及其光催化性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1487-1495. doi: 10.19906/j.cnki.JFCT.2023021
引用本文: 牛杰, 王亮, 李春虎. Ti3C2辅助的Mo掺杂Zn0.5Cd0.5S双功能催化剂的制备及其光催化性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1487-1495. doi: 10.19906/j.cnki.JFCT.2023021
NIU Jie, WANG Liang, LI Chun-hu. Preparation and bifunctional photocatalytic properties of Mo-doped Zn0.5Cd0.5S assisted by Ti3C2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1487-1495. doi: 10.19906/j.cnki.JFCT.2023021
Citation: NIU Jie, WANG Liang, LI Chun-hu. Preparation and bifunctional photocatalytic properties of Mo-doped Zn0.5Cd0.5S assisted by Ti3C2[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1487-1495. doi: 10.19906/j.cnki.JFCT.2023021

Ti3C2辅助的Mo掺杂Zn0.5Cd0.5S双功能催化剂的制备及其光催化性能研究

doi: 10.19906/j.cnki.JFCT.2023021
详细信息
    通讯作者:

    E-mail: wangliang_good@163.com

  • 中图分类号: X703

Preparation and bifunctional photocatalytic properties of Mo-doped Zn0.5Cd0.5S assisted by Ti3C2

  • 摘要: 采用水热法制备了Mo掺杂的Zn0.5Cd0.5S并使其与Ti3C2纳米片复合,通过XRD、SEM、TEM、XPS、UV-vis DRS、荧光光谱和瞬态光电流表征方法分析了光催化剂的晶体结构、表面组成、微观形貌和光电性能。结果表明,Mo的掺杂改变了Zn0.5Cd0.5S的晶格和能带结构,Ti3C2的负载增加了光催化活性位点并加快了电子转移速率。在可见光照射下,通过降解四环素溶液同时产氢考察了光催化剂的活性。在Mo掺杂与负载Ti3C2的协同作用下,60 min内,四环素(TC)的降解率可达70%,氢气产量达883 μmol/(g·h)。自由基捕获实验证明,光催化降解过程的主要活性物质为光生空穴,产氢过程为光生电子。
  • FIG. 2708.  FIG. 2708.

    FIG. 2708.  FIG. 2708.

    图  1  ZCS、ZCM4S、ZCM4ST15的(a)XRD谱图和(b)局部放大图

    Figure  1  (a) XRD patterns and (b) the magnified view of ZCS, ZCM4S, ZCM4ST15

    图  2  (a) ZCS, (b) ZCM4S的SEM照片, (c) Ti3C2, (d) ZCM4ST15的TEM照片, (e)ZCS, (f) ZCM4ST15的HRTEM照片

    Figure  2  SEM images of (a) ZCS, (b) ZCM4S, TEM image of (c) Ti3C2, (d) ZCM4S T15, HRTEM image of (e) ZCS, (f) ZCM4ST15

    图  3  ZCM4ST15的XPS能谱:(a)全谱, (b) Mo 3d, (c) Zn 2p, (d) Cd 3d, (e) S 2p, (f) Ti 2p

    Figure  3  (a) XPS survey spectra, high-resolution of (b) Mo 3d, (c) Zn 2p, (d) Cd 3d, (e) S 2p, (f) Ti 2p of ZCM4ST15

    图  4  (a) ZCS、ZCM4S和ZCM4ST15的紫外-可见漫反射吸收光谱, ZCS和ZCM4S的(b)(αhν)1/2的关系图, (c)Mott Schottky曲线, (d)能带结构图

    Figure  4  (a) UV-vis DRS spectras of ZCS, ZCM4S and ZCM4ST15, (b) Plots of (αhν)1/2 versus hν, (c) Mott Schottky plots, (d) band gap structure of ZCS and ZCM4S

    图  5  ZCS、ZCM4S和ZCM4ST15的(a)荧光发光光谱和(b)瞬态光电流图

    Figure  5  (a) PL spectra and (b) transient photocurrent response of ZCS, ZCM4S和ZCM4ST15

    图  6  三种催化剂的(a)光催化产氢效率和(b)光催化降解效率

    Figure  6  (a) H2 evolution and (b) degradation efficiency of three different photocatalysts

    图  7  ZCM4ST15的(a)产氢重复性实验和(b)降解重复性实验

    Figure  7  (a) H2 evolution and (b) degradation cycle experiment by ZCM4ST15

    图  8  ZCM4ST15的(a)光催化降解TC自由基捕获实验和(b)光催化产氢自由基捕获实验

    Figure  8  (a) Photocatalytic degradation of TC and (b) photocatalytic H2 evolution by ZCM4ST15 in the presence of various scavengers

  • [1] FANG W L, WANG L, LI C H. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. J Fuel Chem Technol,2022,50(4):446−454. doi: 10.1016/S1872-5813(21)60174-3
    [2] LEI Z, CAO X, FAN J, HU X, HU J, LI N, SUN T, LIU E. Efficient photocatalytic H2 generation over In2.77S4/NiS2/g-C3N4 S-scheme heterojunction using NiS2 as electron-bridge[J]. Chem Eng J,2023,457:141249. doi: 10.1016/j.cej.2022.141249
    [3] WEI Z, XU M, LIU J, GUO W, JIANG Z, SHANGGUAN W. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1-xS: Solid-solution-assisted photocatalysis[J]. Chin J Catal,2020,41(1):103−113. doi: 10.1016/S1872-2067(19)63479-0
    [4] LIU S, ZHANG B, YANG Z, XUE Z, MU T. Deep eutectic solvothermal synthesis NiS2/CdS for visible light driven valorization of biomass intermediate 5-hydroxymethylfurfural (HMF) integrated with H2 production[J]. Green Chem, 2023, 25: 2620.
    [5] CHONG W K, NG B J, KONG X Y, TAN L L, PUTRI L K, CHAI S P. Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation[J]. Appl Catal,2023,325:122372. doi: 10.1016/j.apcatb.2023.122372
    [6] TAI Z, SUN G, WANG T, LI Z, TAI J. Construction of PdS@MIL-125-NH2@ZnS type-II heterostructure with efficient charge separation for boosted photocatalytic hydrogen evolution[J]. J Mater Sci Technol,2023,145:116−124. doi: 10.1016/j.jmst.2022.10.041
    [7] WANG Y, LIU C, KONG C, ZHANG F. Defect MoS2 and Ti3C2 nanosheets co-assisted CdS to enhance visible-light driven photocatalytic hydrogen production[J]. Colloids Surf,2022,652:129746. doi: 10.1016/j.colsurfa.2022.129746
    [8] ZHANG Y, LU D, LI H, WANG H, ZHANG B, WANG J, WU Q, ZENG Y, ZHANG X, ZHOU M, D N, HAO H, PEI H, FAN H. Enhanced visible light-driven photocatalytic hydrogen evolution and stability for noble metal-free MoS2/Zn0.5Cd0.5S heterostructures with W/Z phase junctions[J]. Appl Surf Sci,2022,586:152770. doi: 10.1016/j.apsusc.2022.152770
    [9] MARKOVSKAYA D V, CHEREPANOVA S V, SARAEV A A, GERASIMOV E Y, KOZLOVA E A. Photocatalytic hydrogen evolution from aqueous solutions of Na2S/Na2SO3 under visible light irradiation on CuS/Cd0.3Zn0.7S and NizCd0.3Zn0.7S1 + z[J]. Chem Eng J,2015,262:146−155. doi: 10.1016/j.cej.2014.09.090
    [10] LI H, WANG Z, HE Y, MENG S, XU Y, CHRN S, FU X. Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance[J]. J Colloid Interface Sci,2019,535:469−480. doi: 10.1016/j.jcis.2018.10.018
    [11] JIA W L, WU X, LIU Y, ZHAO J Y, ZHANG Y, LIU P F, CHENG Q, YANG H G. Porous ZnIn2S4 with confined sulfur vacancies for highly efficient visible-light-driven photocatalytic H2 production[J]. J Mater,2022,10(48):25586−25594.
    [12] YANG Y, REN W, ZHENG X, MENG S, CAI C, FU X, CHEN S. Decorating Zn0.5Cd0.5S with C, N Co-doped CoP: An efficient dual-functional photocatalyst for H2 evolution and 2, 5-diformylfuran oxidation[J]. ACS Appl Mater Interfaces,2022,14(49):54649−54661. doi: 10.1021/acsami.2c13859
    [13] DEBNATH B, DHINGRA S, SHARMA V, KRISHNAN V, NAJARAGA C M. Efficient photocatalytic generation of hydrogen by twin ZnCdS nanorods decorated with noble metal-free co-catalyst and reduction of 4-nitrophenol in water[J]. Appl Surf Sci,2021,550:149367. doi: 10.1016/j.apsusc.2021.149367
    [14] YANG H, MENG A L, YANG L N, LI Z J. Construction of S-scheme heterojunction consisting of Zn0.5Cd0.5S with sulfur vacancies and NixCo1-x(OH)2 for highly efficient photocatalytic H2 evolution[J]. Chem Eng J,2022,432:134371. doi: 10.1016/j.cej.2021.134371
    [15] AHMAD I, ZOU Y, YAN J, Liu Y, SHUKRULLAH S, NAZ M Y, HUSSAIN H, KHAN W Q, KHALID N R. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications[J]. Adv Colloid Interface Sci,2022,311:102830.
    [16] MEI Z, ZHANG B, ZHENG J, YUAN S, ZHUO Z, MENG X, CHEN Z, AMINE K, YANG W, WANG L W, WANG W, WANG S, GONG Q, LI J, LIU F S, PAN F. Tuning Cu dopant of Zn0.5Cd0.5S nanocrystals enables high-performance photocatalytic H2 evolution from water splitting under visible-light irradiation[J]. Nano Energy,2016,26:405−416. doi: 10.1016/j.nanoen.2016.05.051
    [17] SHE H, SUN Y, LI S, HUANG J, WANG L, ZHU G, WANG Q. Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance[J]. Appl Catal,2019,245:439−447. doi: 10.1016/j.apcatb.2019.01.002
    [18] YANG H, SUN Y, PEI W, WANG X, LUO Y, JIN Y, ZHANG Y, YI X, LI Q, FAN F, LI X. Insight into energy level modulation via Mn doping solid solutions for enhanced photocatalytic hydrogen production[J]. Inorg Chem Commun,2022,135:109041. doi: 10.1016/j.inoche.2021.109041
    [19] WANG H, HU P, ZHOU J, ROEFFAERS M B J, WENG B, WANG Y, JI H. Ultrathin 2D/2D Ti3C2Tx/semiconductor dual-functional photocatalysts for simultaneous imine production and H2 evolution[J]. J Mater,2021,9(35):19984−19993.
    [20] TAO J, WANG M, LIU G, LIU Q, LU L, WAN N, TANG H, QIAO G. Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction[J]. J Adv Ceram,2022,11(7):1117−1130. doi: 10.1007/s40145-022-0598-y
    [21] GUO P, ZHANG D, LIU X, LIU W, WANG R, ZHANG Z, QIU S. In situ self-assembly of mesoporous Zn-Cd-Mo-S quaternary metal sulfides with double heterojunction synergistic charge transfer for boosting photocatalytic hydrogen production[J]. J Alloys Compd,2022,921:166066. doi: 10.1016/j.jallcom.2022.166066
    [22] WANG A, ZHANG L, LI X, GAO Y, LI N, LU G, GE L. Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved photocatalytic H2 production performance[J]. Chin J Catal,2022,43(5):1295−1305. doi: 10.1016/S1872-2067(21)63912-8
    [23] RAN J, GAO G, LI F T, MA T Y, DU A, QIAO S Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nat Commun,2017,8:13907. doi: 10.1038/ncomms13907
    [24] FAN W, CHANG H, PANG W, LI Y, XIAO C, JIANG Y, JIANG Z, YIN G. Ultra-thin nanosheet assembled 3D honeycomb-like Zn0.5Cd0.5S for boosting photocatalytic H2 evolution[J]. Sep Purif,2023,309:123102. doi: 10.1016/j.seppur.2023.123102
    [25] NG B J, PUTRI L K, KONG X Y, SHAK K P Y, PASBAHSHS P, CHAI S P, MOHAMED A R. Sub-2 nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution[J]. Appl Catal,2018,224:360−367. doi: 10.1016/j.apcatb.2017.10.005
    [26] LI Z, ZHOU W, TANG Y, TAN X, ZHANG Y, GENG Z, GUO Y, LIU L, YU T, YE J. Insights into the operation of noble-metal-free cocatalyst 1T-WS2-decorated Zn0.5Cd0.5S for enhanced photocatalytic hydrogen evolution[J]. ChemSusChem,2021,14(21):4752−4763. doi: 10.1002/cssc.202101670
    [27] LI C, CHE H, YAN Y, LIU C, DONG H. Z-scheme AgVO3/ZnIn2S4 photocatalysts: “One Stone and Two Birds” strategy to solve photocorrosion and improve the photocatalytic activity and stability[J]. Chem Eng J,2020,398:125523. doi: 10.1016/j.cej.2020.125523
    [28] NAZ H, ALI R N, LIU Q, YANG S, XIANG B. Niobium doped zinc oxide nanorods as an electron transport layer for high-performance inverted polymer solar cells[J]. J Colloid Interface Sci,2018,512:548−554. doi: 10.1016/j.jcis.2017.10.041
    [29] HAO H, QIN M, LI P. Structural, optical, and magnetic properties of Co-doped ZnO nanorods fabricated by a facile solution route[J]. J Alloys Compd,2012,515:143−148. doi: 10.1016/j.jallcom.2011.11.112
    [30] AN R S, ZHAO L Y, BAI H, WANG L, LI C H. Decoration of Au NPs on hollow structured BiOBr with surface oxygen vacancies for enhanced visible light photocatalytic H2O2 evolution[J]. J Solid State Chem,2022,306:122722. doi: 10.1016/j.jssc.2021.122722
  • 加载中
图(9)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  58
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-02-28
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回