留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质气化耦合高温热重整制合成气的反应行为分析

王永斌 张健 梁万才 曹国强 李春玉 赵建涛 房倚天

王永斌, 张健, 梁万才, 曹国强, 李春玉, 赵建涛, 房倚天. 生物质气化耦合高温热重整制合成气的反应行为分析[J]. 燃料化学学报(中英文), 2023, 51(7): 921-929. doi: 10.19906/j.cnki.JFCT.2023022
引用本文: 王永斌, 张健, 梁万才, 曹国强, 李春玉, 赵建涛, 房倚天. 生物质气化耦合高温热重整制合成气的反应行为分析[J]. 燃料化学学报(中英文), 2023, 51(7): 921-929. doi: 10.19906/j.cnki.JFCT.2023022
WANG Yong-bin, ZHANG Jian, LIANG Wan-cai, CAO Guo-qiang, LI Chun-yu, ZHAO Jian-tao, FANG Yi-tian. Kinetic analysis of biomass gasification coupled with non-catalytic reforming to syngas production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 921-929. doi: 10.19906/j.cnki.JFCT.2023022
Citation: WANG Yong-bin, ZHANG Jian, LIANG Wan-cai, CAO Guo-qiang, LI Chun-yu, ZHAO Jian-tao, FANG Yi-tian. Kinetic analysis of biomass gasification coupled with non-catalytic reforming to syngas production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 921-929. doi: 10.19906/j.cnki.JFCT.2023022

生物质气化耦合高温热重整制合成气的反应行为分析

doi: 10.19906/j.cnki.JFCT.2023022
基金项目: 山西省科技重大专项(20201102006)和中国科学院战略先导专项(XDA29050100)资助
详细信息
    通讯作者:

    E-mail:zhaojt@sxicc.ac.cn

  • 中图分类号: TQ171.6 + 25.2

Kinetic analysis of biomass gasification coupled with non-catalytic reforming to syngas production

Funds: The project was supported by the Major Program Science and Technology Foundation of Shanxi Province (20201102006) and Chinese Academy of Sciences Strategic Pilot Project, China (XDA29050100).
  • 摘要: 焦油污染物的洁净转化是影响生物质气化技术大规模应用的关键问题之一,粗合成气非催化重整可以将焦油组分转化为CO和H2,消除焦油的同时增加合成气的产量。本实验以热力学计算为基础,主要研究生物质气化粗合成气高温热重整的热力学、动力学行为以及反应机理。研究表明,重整反应温度、O2 /粗合成气比(O/G)是影响重整过程的关键因素。C2H2作为CH4、C2H4、C6H6转化的中间产物,在反应初期逐渐累积。到反应后期,在·O、·OH、·HCO的作用下,C2H2逐步转化为CO和·CH2、·CH3、·C2H3。升高重整反应温度可大幅缩短焦油组分完全转化所需要的时间。重整温度1300 ℃、O/G比为0.16,停留时间1.5 s时,合成气的干基含量为81.07%,焦油组分转化率可达99.60%。
  • FIG. 2465.  FIG. 2465.

    FIG. 2465.  FIG. 2465.

    图  1  温度对不同组成平衡产物的影响

    Figure  1  Effect of temperature on equilibrium products with different composition

    图  2  温度变化对重整过程的影响

    Figure  2  Effect of temperature change on reforming process

    图  3  温度对重整产物的影响

    Figure  3  Effect of temperatures on reforming products

    图  4  不同O/G比对重整过程的影响

    Figure  4  Effect of O/G change on reforming process

    图  5  O/G比对重整产物的影响

    Figure  5  Effect of different O/G on reforming products

    图  6  组分摩尔分数随反应停留时间的变化

    Figure  6  Variations of component molar composition with reaction residence time

    图  7  组分摩尔转化率随停留时间的变化

    Figure  7  Variation of molar conversion of components with residence time

    图  8  重整过程中焦油的转化路径示意图

    Figure  8  Possible reaction pathway for tar conversion in reforming

    表  1  生物质气化粗合成气组成[5]

    Table  1  Composition of raw gas of the biomass gasification [5]

    CompositionContent /%CompositionContent /%
    CO6.83C2H40.20
    CO215.29C6H61.67
    H210.01C7H80.15
    H2O40.02C10H82.15
    N220.68C6H5OH0.03
    CH46.22C4H4O0.07
    C2H60.38
    下载: 导出CSV
  • [1] BASU P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory[M]. 2nd ed. London: Academic press, 2018: 47-86.
    [2] 赵小燕, 汤文, 曹景沛, 任杰. 炭载金属催化剂在生物质焦油重整中的研究进展[J]. 燃料化学学报,2022,50(12):1547−1563.

    ZHAO Xiao-yan, TANFG Wen, CAO Jing-pei, REN Jie. Recent progress of tar reforming over char supported metal catalyst[J]. J Fuel Chem Technol,2022,50(12):1547−1563.
    [3] 苏德仁, 黄艳琴, 周肇秋, 阴秀丽, 吴创之, 马隆龙. 两段式固定床富氧-水蒸气气化实验研究[J]. 燃料化学学报,2011,39(8):595−599.

    SU De-ren, HUANG Yan-qin, ZHOU Zhao-qiu, YIN Xiu-li, WU Chuang-zhi, MA Long-long. Experimental study on biomass steam-oxygen enriched air gasification in a two-stage fixed bed gasifier[J]. J Fuel Chem Technol,2011,39(8):595−599.
    [4] SRINIVAS S, FIELD R P, HERZOG H J. Modeling tar handling options in biomass gasification[J]. Energy Fuels,2013,27(6):2859−2873. doi: 10.1021/ef400388u
    [5] EVANS R J, KNIGHT R A, ONISCHAK M, BABU S. P. Development of biomass gasification to produce substitute fuels[R]. Virginia: Pacific Northwest Lab. , Richland, WA (USA), 1988: 24−29.
    [6] 王胜, 王树东, 袁中山, 倪长军. 甲烷自热重整制氢热力学分析[J]. 燃料化学学报,2006,34(2):222−225.

    WANG Sheng, WANG Shu-dong, YUAN Zhong-shan, NI Chang-jun. Thermodynamically favorable operating conditions for production of hydrogen by methane autothermal reforming[J]. J Fuel Chem Technol,2006,34(2):222−225.
    [7] LUTZ A E, BRADSHAW R W, BROMBERG L, RABINOVICH A. Thermodynamic analysis of hydrogen production by partial oxidation reforming[J]. Int J Hydrogen Energy,2004,29(8):809−816. doi: 10.1016/j.ijhydene.2003.09.015
    [8] FREITAS A C D, GUIRARDELLO R. Oxidative reforming of methane for hydrogen and synthesis gas production: Thermodynamic equilibrium analysis[J]. J Nat Gas Chem,2012,21(5):571−580. doi: 10.1016/S1003-9953(11)60406-4
    [9] WEI P, SONG C. Computational Analysis of Energy Aspects of CO2 Reforming and Oxy-CO2 Reforming of Methane at Different Pressures[M]. Washington: ACS Publications, 2002: 316−328.
    [10] 唐强, 阳绪东, 张力. 甲烷三重整制合成气热力学分析[J]. 热能动力工程,2012,27(3):296−300.

    TANG Qing, YANG Xu-dong, ZHANG Li. Thermodynamic analysis of the preparation of syngas through a triple-reforming of methane[J]. J Eng Therm Energy Power,2012,27(3):296−300.
    [11] 陈玉民, 赵永椿, 张军营, 郑楚光. 甲烷自热重整制氢的热力学和动力学分析[J]. 燃料化学学报,2011,39(8):633−640.

    CHEN Yu-ming, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. Thermodynamic and kinetic analyses for hydrogen production via methane autothermal reforming[J]. J Fuel Chem Technol,2011,39(8):633−640.
    [12] SIMEONE M, SALEMME L, ALLOUIS C. Reactor temperature profile during autothermal methane reforming on Rh/Al2O3 catalyst by IR imaging[J]. Int J Hydrogen Energy,2008,33(18):4798−4808. doi: 10.1016/j.ijhydene.2008.05.089
    [13] WANG W, LI Q, WANG Q, ZHANG J, LIU J. Tar steam reforming during biomass gasification: Kinetic model and reaction pathway[J]. Clean Technol Environ,2022,24(1):39−50. doi: 10.1007/s10098-021-02062-7
    [14] SAVCHENKO V I, ZIMIN Y S, NIKITIN A V, SEDOV I V, ARUTYUNOV V S. Non-Catalytic Steam Reforming of C1–C4 Hydrocarbons[J]. Petrol Chem,2021,61(7):762−772. doi: 10.1134/S0965544121070021
    [15] SAVCHENKO V I, ZIMIN Y S, NIKITIN A V, SEDOV I V, ARUTYUNOV V S. Utilization of CO2 in non-catalytic dry reforming of C1–C4 hydrocarbons[J]. J CO2 Util,2021,47(101490):1−9.
    [16] BAIGMOHAMMADI M, PATEL V, NAGARAJA S, RAMALINGAM A, MARTINEZ S, PANIGRAHY S, CURRAN H J. Comprehensive experimental and simulation study of the ignition delay time characteristics of binary blended methane, ethane, and ethylene over a wide range of temperature, pressure, equivalence ratio, and dilution[J]. Energy Fuels,2020,34(7):8808−8823. doi: 10.1021/acs.energyfuels.0c00960
    [17] 李建伟, 陈冲, 王丹, 姚卫国, 张三莉. 甲烷二氧化碳重整热力学分析[J]. 石油与天然气化工, 2015, 44(3): 60−64.

    LI Jian-wei, CHEN Chong, WANG Dan, YAO Wei-guo, ZHANG San-li, Thermodynamic analysis of methane reforming with carbon dioxide[J]. Chem Eng Oil Gas, 2015, 44(3): 60−64.
    [18] 张舒冬, 金英杰, 倪向前, 张喜文, 孙万付, 方向晨. 甲烷自热重整制合成气热力学平衡分析[J]. 当代化工, 2009, 38(2): 165−168.

    ZHANG Shu-dong, JIN Ying-jie, NI Xiang-qiang, ZHANG Xi-wen, SUN Wan-fu, FANG Xiang-chen. Thermodynamics Equilibrium analysis for syngas production by methane autothermal reforming[J], Contemp Chem Ind 2009, 38(2): 165−168.
    [19] YU L, SONG M, WILLIAMS P T, WEI Y. Optimized reforming of biomass derived gas based on thermodynamic and kinetics analysis with activated carbon fibers supported Ni-Al2O3[J]. Bioenergy Res,2020,13(2):581−590. doi: 10.1007/s12155-019-10087-6
    [20] JESS A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel,1996,75(12):1441−1448. doi: 10.1016/0016-2361(96)00136-6
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  96
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2022-11-09
  • 录用日期:  2022-11-22
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回