留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

β分子筛的Si/Al比对PtZn催化丙烷非临氢脱氢性能的影响

李博楠 邢亚楠 康磊磊 刘晓艳

李博楠, 邢亚楠, 康磊磊, 刘晓艳. β分子筛的Si/Al比对PtZn催化丙烷非临氢脱氢性能的影响[J]. 燃料化学学报(中英文), 2023, 51(10): 1432-1440. doi: 10.19906/j.cnki.JFCT.2023023
引用本文: 李博楠, 邢亚楠, 康磊磊, 刘晓艳. β分子筛的Si/Al比对PtZn催化丙烷非临氢脱氢性能的影响[J]. 燃料化学学报(中英文), 2023, 51(10): 1432-1440. doi: 10.19906/j.cnki.JFCT.2023023
LI Bo-nan, XING Ya-nan, KANG Lei-lei, LIU Xiao-yan. Effect of Si/Al ratio of β zeolite on propane dehydrogenation without H2 over PtZn catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1432-1440. doi: 10.19906/j.cnki.JFCT.2023023
Citation: LI Bo-nan, XING Ya-nan, KANG Lei-lei, LIU Xiao-yan. Effect of Si/Al ratio of β zeolite on propane dehydrogenation without H2 over PtZn catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1432-1440. doi: 10.19906/j.cnki.JFCT.2023023

β分子筛的Si/Al比对PtZn催化丙烷非临氢脱氢性能的影响

doi: 10.19906/j.cnki.JFCT.2023023
基金项目: 国家自然科学基金(22102180),辽宁省“兴辽英才计划”项目(XLYC2007070)和中国科学院洁净能源创新研究院合作基金(DNL202002)资助
详细信息
    通讯作者:

    Tel: 13478962650, E-mail: xyliu2003@dicp.ac.cn

  • 中图分类号: O643.3

Effect of Si/Al ratio of β zeolite on propane dehydrogenation without H2 over PtZn catalyst

Funds: The project was supported by the National Natural Science Foundation of China (22102180), LiaoNing Revitalization Talents Program (XLYC2007070) and the DNL Cooperation Fund, CAS (DNL202002)
  • 摘要: 采用共浸渍法制备PtZn/β-x(x为SiO2/Al2O3物质的量比)分子筛双金属催化剂,探究了β分子筛中硅铝比对丙烷非临氢脱氢反应性能的影响。采用XRD、BET、HAADF-STEM、NH3-TPD、C3H6-TPD等一系列表征技术对催化剂的物相结构、表面性质及其对丙烷非临氢脱氢反应性能的影响进行了研究。结果表明,催化稳定性随载体中Si/Al比的增大而提高(稳定性顺序:PtZn/DeAl-β > PtZn/β-40 > PtZn/β-30 > PtZn/β-25),而催化剂的强酸位点数量(PtZn/β-30 > PtZn/β-40 > PtZn/β-25 > PtZn/DeAl-β),在一定程度上受硅铝比的影响,与丙烯选择性顺序相反。因此,分子筛的Si/Al比对催化剂的性质有重要的调变作用,当催化剂强酸位点较少、丙烯吸附较弱、比表面积较大时,有助于提高丙烷转化率、丙烯选择性和催化稳定性。
  • FIG. 2702.  FIG. 2702.

    FIG. 2702.  FIG. 2702.

    图  1  500 ℃焙烧后PtZn/β-x系列催化剂的XRD谱图

    Figure  1  XRD patterns of PtZn/β-x catalysts after calcination at 500 ℃

    图  2  PtZn/β-x系列催化剂的N2吸附-脱附等温线

    Figure  2  N2 adsorption and desorption isotherms of PtZn/β-x catalysts

    图  3  PtZn/β-x系列催化剂在还原后的HAADF-STEM照片和粒径分布

    Figure  3  HAADF-STEM spectra and particle size statistic chart of (a) PtZn/β-25, (b) PtZn/β-30, (c) PtZn/β-40, (d) PtZn/DeAl-β after reduction

    图  4  (a)PtZn/β-x系列催化剂的H2-TPR谱图,(b)PtZn/β-40催化剂H2-TPR的质谱信号,(c)β-x载体的H2-TPR谱图

    Figure  4  (a) H2-TPR spectra of PtZn/β-x catalysts, (b) Mass signal of PtZn/β-40 during H2-TPR, (c) H2-TPR spectra of β-x supports (The graph in the frame is mass signal of β-40 with mass number of 16)

    图  5  PtZn/β-x系列催化剂的NH3-TPD谱图及NH3脱附量

    Figure  5  (a) NH3-TPD spectra and (b) NH3 desorption of PtZn/β-x catalysts

    图  6  PtZn/β-x系列催化剂的C3H6-TPD谱图

    Figure  6  Temperature-MS signal spectra of C3H6-TPD of PtZn/β-x catalysts Mass number is (a) 42 (C3H6), (b) 30 (C2H6), (c) 16 (CH4)

    图  7  PtZn/β-x系列催化剂丙烷非临氢脱氢反应活性

    Figure  7  Activity evaluation of PtZn/β-x catalysts on propane dehydrogenation without H2 (a): Conversion of propane; (b): Selectivity of propylene

    (Reaction conditions: 0.1 g catalyst, 600 ℃, 30 mL/min 5%C3H8/He, WHSV = 1.8 h−1)

    图  8  (a) 不同目数和(b) 不同线速下PtZn/DeAl-β催化剂的丙烷脱氢催化性能比较

    Figure  8  Comparison of PDH performance of PtZn/DeAl-β catalysts (a) with different mesh numbers and (b) at different linear velocities (Reaction conditions: 600 ℃, WHSV = 1.8 h−1, (a) 0.1 g catalyst, 20−40 or 60−80 mesh, 30 mL/min 5%C3H8/He(b) 0.02 g or 0.05 g or 0.1 g catalyst, total mass is 0.1 g, 60−80 mesh, 6 or 15 or 30 mL/min 5%C3H8/He)

    图  9  PtZn/β-x系列催化剂反应3 h后的热重曲线

    Figure  9  Thermogravimetric analysis of PtZn/β-x catalysts after propane dehydrogenation reaction without H2 for 3 h

    表  1  PtZn/β-x系列催化剂的织构参数和Pt、Zn元素含量

    Table  1  Textural parameters and Pt, Zn element content of PtZn/β-x catalysts

    Catalyst$S_{{\rm{BET}}}^{\rm{a}} $ /
    (m2·g−1)
    $S_{\rm{micro}}^{\rm{b}} $ /(m2·g−1)$S_{\rm{external}}^{\rm{b}} $ /(m2·g−1)$v_{\rm{micro}}^{\rm{b}} $ /
    (cm3·g−1)
    $v_{\rm{meso}}^{\rm{c}} $ /
    (cm3·g−1)
    Ptd w/%Znd w/%
    PtZn/β-25436.4305.6130.70.160.280.502.60
    PtZn/β-30482.8383.799.10.200.180.552.84
    PtZn/β-40438.6345.293.40.180.170.572.83
    PtZn/DeAl-β499.5329.5170.00.170.480.562.83
    a: Calculated by BET method, b: Calculated by t-plot method, c: Calculated by BJH method, d: Characterized by ICP-OES
    下载: 导出CSV

    表  2  PtZn/β-x系列催化剂的H2-TPR过程耗氢量

    Table  2  Hydrogen consumption in H2-TPR process of PtZn/β-x catalysts

    CatalystTheoretical H2 consumption of
    Ptδ + /(mmol·g−1)
    (1) /
    (mmol·g−1)
    (2) /
    (mmol·g−1)
    (3) /
    (mmol·g−1)
    (4) /
    (mmol·g−1)
    Reduction temperature of
    Ptδ + /℃
    PtZn/β-250.0250.0390.0020.0120−30.7
    PtZn/β-300.0280.0430.00300.13−31.2
    PtZn/β-400.0290.0340.01000−27.1
    PtZn/DeAl-β0.0290.0240.0020.0260−26.6
    下载: 导出CSV

    表  3  PtZn/β-x系列催化剂反应3 h后的热重参数和失活速率常数(kd)

    Table  3  Thermogravimetric parameters and deactivation rate constant (kd) of PtZn/β-x catalysts after 3 h propane dehydrogenation reaction without H2

    CatalystWeight /%Temp. range /℃kd /h−1
    PtZn/β-2514.4387−6100.38
    PtZn/β-3012.5397−6100.35
    PtZn/β-4011.5415−6180.13
    PtZn/DeAl-β1.50505−6810.10
    下载: 导出CSV
  • [1] LIU Y L, ADAM T, DANG Y L, ANNE M, STEVEN L S, PRASHANT D. Roles of enhancement of C-H activation and diminution of C-O formation within M1-phase pores in propane selective oxidation[J]. ChemCatChem,2020,13(3):882−899.
    [2] ZHANG H C, LI C S, LU Q, CHENG M J, WILLIAM A G. Selective activation of propane using intermediates generated during water oxidation[J]. J Am Chem Soc,2021,143(10):3967−3974. doi: 10.1021/jacs.1c00377
    [3] HU Y Q, ZHAO F Y, WEI F, JIN Y. Ammoxidation of propylene to acrylonitrile in a bench-scale circulating fluidized bed reactor[J]. Chem Eng Process,2007,46(10):918−923. doi: 10.1016/j.cep.2007.05.009
    [4] XI Z W, ZHOU N, SUN Y, LI K L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide[J]. Science,2001,292(5519):1139−1141. doi: 10.1126/science.292.5519.1139
    [5] LEI Y, MEHMOOD F, LEE S, GREELEY J, LEE B, SEIFERT S, WINANS R E, ELAM J W, MEYER R J, REDFERN P C, TESCHNER D, SCHLOGL R, PELLIN M J, CURTISS L A, VAJDA S. Increased silver activity for direct propylene epoxidation via subnanometer size effects[J]. Science,2010,328(5975):224−228. doi: 10.1126/science.1185200
    [6] MATTEO M, MARIANNA G, SIPPAKORN W, BERT M W. Propane to olefins tandem catalysis: A selective route towards light olefins production[J]. Chem Soc Rev,2021,50(20):11503−11529. doi: 10.1039/D1CS00357G
    [7] ALI H M, RAWAN A, JAMES W, VALENTINA O I, SULJO L. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit[J]. Science,2021,373(6551):217−222. doi: 10.1126/science.abg7894
    [8] STEPHANIE S, MAARTEN K S, VLADIMIR V G, EVGENIY A R, STEPHANIE S, MARIE F R, GUY B M. The positive role of hydrogen on the dehydrogenation of propane on Pt (111)[J]. ACS Catal,2017,7:7495−7508. doi: 10.1021/acscatal.7b01584
    [9] FENG B H, WEI Y C, SONG W Y, XU C M. A review on the structure-performance relationship of the catalysts during propane dehydrogenation reaction[J]. Pet Sci,2022,19(2):819−838. doi: 10.1016/j.petsci.2021.09.015
    [10] SAJJAD R, CHEN L W, ANTONIO M, SIBUDJING K, ARMANDO B. Enhanced selectivity and stability of Pt-Ge/Al2O3 catalysts by Ca promotion in propane dehydrogenation[J]. Chem Eng J,2021,405:1−10.
    [11] WU X P, ZHANG Q, CHEN L G, LIU Q Y, ZHANG X H, ZHANG Q, MA L L, WANG C G. Enhanced catalytic performance of PtSn catalysts for propane dehydrogenation by a Zn-modified Mg(Al)O support[J]. Fuel Process Technol,2020,198:1−9.
    [12] 余长林, 徐恒泳, 陈喜蓉, 葛庆杰, 李文钊. PtZn-Sn/SBA-15合成、表征及对丙烷催化脱氢性能[J]. 燃料化学学报,2010,38(3):308−312. doi: 10.1016/S1872-5813(10)60036-9

    YU Chang-lin, XU Heng-yong, CHEN Xi-rong, GE Qing-jie, LI Wen-zhao. Preparation, characterization and catalytic performance of PtZn-Sn/SBA-15 catalyst for propane dehydrogenation[J]. J Fuel Chem Technol,2010,38(3):308−312. doi: 10.1016/S1872-5813(10)60036-9
    [13] ZHOU H L, GONG J J, XU B L, DENG S C, DING Y H, YU L, FAN Y N. PtSnNa/SUZ-4: An efficient catalyst for propane dehydrogenation[J]. Chin J Catal,2017,38(3):529−536. doi: 10.1016/S1872-2067(17)62750-5
    [14] SUN Q M, WANG N, FAN Q Y, ZENG L, ALVARO M, MIAO S, YANG R O, JIANG Z, ZHOU W, ZHANG J C, ZHANG T J, XU J, ZHANG P, CHENG J, YANG D C, JIA R, LI L, ZHANG Q H, WANG Y, OSAMU T, YU J H. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angew Chem Int Ed,2020,59(44):19450−19459. doi: 10.1002/anie.202003349
    [15] QI L, MELIKE B, ZHANG Y F, ALICIA L, LIU L M, LI J W, CHEN Y Z, ADAM S H, SIMON R B, HAN Y, BRUCE C G, ALEXIS T B. Propane dehydrogenation catalyzed by isolated pt atoms in identical with ≡SiOZn-OH nests in dealuminated zeolite beta[J]. J Am Chem Soc,2021,143(50):21364−21378. doi: 10.1021/jacs.1c10261
    [16] 薛琳, 刘红梅, 刘东兵, 张明森. 丙烷脱氢 Pt 催化剂稳定性研究进展[J]. 石油化工,2019,48(7):731−735.

    XUE Lin, LIU Hong-mei, LIU Dong-bing, ZHANG Ming-sen. Research progress in the stability of Pt-based catalysts for propane dehydrogenation[J]. Pet Technol,2019,48(7):731−735.
    [17] SHI L, DENG G M, LI W G, MIAO S, WANG Q N, ZHANG W P, LU A H. Al2O3 nanosheets rich in pentacoordinate Al3 + ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angew Chem Int Ed,2015,54(47):13994−13998. doi: 10.1002/anie.201507119
    [18] ZHU X Y, WANG T H, XU Z K, YUE Y Y, LIN M G, ZHU H B. Pt-Sn clusters anchored at Alpenta3 + sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation[J]. J Energy Chem,2022,65:293−301. doi: 10.1016/j.jechem.2021.06.002
    [19] YUKI N, XING F L, HYUNGWON H, KEN-ICHI S, SHINYA F. Doubly decorated platinum-gallium intermetallics as stable catalysts for propane dehydrogenation[J]. Angew Chem Int Ed,2021,60(36):19715−19719. doi: 10.1002/anie.202107210
    [20] CHEN S, ZHAO Z J, MU R T, CHANG X, LUO J, STEPHEN C P, A JEREMY K, SUN G D, PEI C L, JEFFREY T M, ZHOU X H, EVGENY V, YANG Y, GONG J L. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts[J]. Chem,2021,7(2):387−405. doi: 10.1016/j.chempr.2020.10.008
    [21] XU Z K, YUE Y Y, BAO X J, XIE Z L, ZHU H B. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework[J]. ACS Catal,2020,10:818−828. doi: 10.1021/acscatal.9b03527
    [22] ZHANG B F, LI G Z, ZHAI Z W, CHEN D L, TIAN Y J, YANG R O, WANG L, ZHANG X W, LIU G Z. PtZn intermetallic nanoalloy encapsulated in silicalite‐1 for propane dehydrogenation[J]. AIChE J,2021,67(7):1−12.
    [23] TREACY M M NEWSAM J, J M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth[J]. Nature,1988,332(17):249−251.
    [24] WEI S, DAI H, LONG J P, LIN H Q, GU J K, ZONG X P, YANG D, TANG Y, YANG Y H, DAI Y H. Nonoxidative propane dehydrogenation by isolated Co2 + in BEA zeolite: Dealumination-determined key steps of propane C-H activation and propylene desorption[J]. Chem Eng J, 2022.
    [25] PHUOC H H, JUNGWON W, ROJIN F I, MUHAMMAD A S, DEREK C, LOUISE O. The effect of Si/Al ratio on the oxidation and sulfur resistance of beta zeolite-supported Pt and Pd as diesel oxidation catalysts[J]. ACS Eng Au,2021,2(1):27−45.
    [26] FAN X Q, LI J M, ZHAO Z, WEI Y C, LIU J, DUAN A J, JIANG G Y. Dehydrogenation of propane over PtSnAl/SBA-15 catalysts: Al addition effect and coke formation analysis[J]. Catal Sci Technol,2015,5:339−350. doi: 10.1039/C4CY00951G
    [27] 吴玉帅, 尤晴, 董旭杰, 朱子麒, 王旭, 陈汇勇, 马晓迅. 杂原子掺杂beta分子筛的烯烃环氧化催化性能[J]. 化工进展,2022,41(8):4192−4203.

    WU Yu-shuai, YOU Qing, DONG Xu-jie, ZHU Zi-qi, WANG Xu, CHEN Hui-yong, MA Xiao-xun. Synthesis of heteroatom-substituted beta zeolites for catalytic epoxidation of cyclic olefins[J]. Chem Ind Eng Prog,2022,41(8):4192−4203.
    [28] HO L W, HWANG C P, LEE J F, WANG I, YEH C T. Reduction of platinum dispersed on dealuminated beta zeolite[J]. J Mol Catal A-Chem,1998,136:293−299. doi: 10.1016/S1381-1169(98)00081-8
    [29] CHEN C, SUN M L, HU Z P, REN J T, ZHANG S M, YUAN Z Y. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene[J]. Catal Sci Technol,2019,9(8):1979−1988. doi: 10.1039/C9CY00237E
    [30] WANG H Z, SUN L L, SUI Z J, ZHU Y A, YE G H, CHEN D, ZHOU X G, YUAN W K. Coke formation on Pt-Sn/Al2O3 catalyst for propane dehydrogenation[J]. Ind Eng Chem Res,2018,57:8647−8654. doi: 10.1021/acs.iecr.8b01313
    [31] ZHANG Y W, ZHOU Y M, LIU H, WANG Y, XU Y, WU P C. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation[J]. Appl Catal A: Gen,2007,333(2):202−210. doi: 10.1016/j.apcata.2007.07.049
    [32] CHEN S, CHANG X, SUN G D, ZHANG T T, XU Y Y, WANG Y, PEI C L, GONG J L. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies[J]. Chem Soc Rev,2021,50:3315−3354. doi: 10.1039/D0CS00814A
    [33] ZHANG Y W, ZHOU Y M, HUANG L, ZHOU S J, SHENG X L, WANG Q L, ZHANG C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chem Eng J,2015,270:352−361. doi: 10.1016/j.cej.2015.01.008
    [34] YU J F, WANG R, REN S Y, SUN X Y, CHEN C L, GE Q J, FANG W, ZHANG J, XU H Y, SU D S. The unique role of CaO in stabilizing the Pt/Al2O3 catalyst for the dehydrogenation of cyclohexane[J]. ChemCatChem,2012,4:1376−1381. doi: 10.1002/cctc.201200067
    [35] LIU L C, MIGUEL L H, CHRISTIAN W L, SERGIO R B, PATRICIA C, RAMON M, LAURA S, AARON S, PEDRO S, JOSE J C, AVELINO C. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites[J]. Nat Catal,2020,3:628−638. doi: 10.1038/s41929-020-0472-7
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  123
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 修回日期:  2023-03-10
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回