留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型咪唑类离子液体催化CO2转化合成碳酸丙烯酯研究

滑淑清 王景芸 孙京 周明东

滑淑清, 王景芸, 孙京, 周明东. 负载型咪唑类离子液体催化CO2转化合成碳酸丙烯酯研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1506-1513. doi: 10.19906/j.cnki.JFCT.2023027
引用本文: 滑淑清, 王景芸, 孙京, 周明东. 负载型咪唑类离子液体催化CO2转化合成碳酸丙烯酯研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1506-1513. doi: 10.19906/j.cnki.JFCT.2023027
HUA Shu-qing, WANG Jing-yun, SUN Jing, ZHOU Ming-dong. Synthesis of propylene carbonate from CO2 catalyzed by supported imidazoles ionic liquids[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1506-1513. doi: 10.19906/j.cnki.JFCT.2023027
Citation: HUA Shu-qing, WANG Jing-yun, SUN Jing, ZHOU Ming-dong. Synthesis of propylene carbonate from CO2 catalyzed by supported imidazoles ionic liquids[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1506-1513. doi: 10.19906/j.cnki.JFCT.2023027

负载型咪唑类离子液体催化CO2转化合成碳酸丙烯酯研究

doi: 10.19906/j.cnki.JFCT.2023027
详细信息
    通讯作者:

    E-mail: sunjing@lnpu.edu.cn

  • 中图分类号: TQ2

Synthesis of propylene carbonate from CO2 catalyzed by supported imidazoles ionic liquids

  • 摘要: CO2是导致全球气候变暖的主要温室气体之一,但同时又是丰富的C1资源,故其高值化利用受到了人们关注。环状碳酸酯是电池及电容器的优良介质,在工业生产中应用极为广泛。因此,从环境保护和资源利用的角度看,将CO2转化为环状碳酸酯具有重要的意义。本工作合成了一系列聚苯乙烯树脂负载的咪唑类非均相催化剂,考察了此类催化剂在高压反应釜中催化二氧化碳环加成反应的活性。结果表明,催化剂PS-TBIM-PCIMBr2表现出优秀且稳定的催化活性,PS-TBIM-PCIMBr2在固定床连续反应器上可以连续运行500 h,反应依旧可以获得91%的产率。
  • FIG. 2710.  FIG. 2710.

    FIG. 2710.  FIG. 2710.

    图  1  二氧化碳与环氧化物制备环状碳酸酯的示意图

    Figure  1  Schematic diagram of preparing cyclic carbonate from carbon dioxide and epoxides

    图  2  各固载化离子液体催化剂的结构示意图

    Figure  2  Structural schematic diagram of immobilized ionic liquid catalyst

    图  3  氯球和催化剂的FT-IR谱图

    Figure  3  FT-IR spectra of PS-Cl and catalysts

    图  4  催化剂的热重分析曲线

    Figure  4  TGA curves of catalysts

    图  5  PS-Cl和催化剂的扫描电镜照片

    Figure  5  SEM image of PS-Cl and catalysts

    (Each set of (a) refers to a large SEM image of the sample; each set of (b) refers to a locally enlarged SEM image of the sample)

    图  6  催化剂用量对CO2环加成反应的影响

    Figure  6  Effect of catalyst usage on the cycloaddition reaction

    (Reaction conditions: PO 0.137 mol, 120 ℃, CO2 2 MPa, 4 h)

    图  7  二氧化碳压力对CO2环加成反应的影响

    Figure  7  Effect of CO2 pressure on the cycloaddition reaction

    (Reaction conditions: PO 0.137 mol, PS-TBIM-PCIMBr2 20%, 120 ℃, 4 h)

    图  8  反应温度对CO2环加成反应的影响

    Figure  8  Effect of temperature on the cycloaddition reaction

    (Reaction conditions: PO 0.137 mol, PS-TBIM-PCIMBr2 20%, CO2 2 MPa, 4 h)

    图  9  反应时间对CO2环加成反应的影响

    Figure  9  Effect of reaction time on the cycloaddition reaction

    (Reaction conditions: PO 0.137 mol, PS-TBIM-PCIMBr2 20%, CO2 2 MPa, 120 ℃)

    图  10  催化剂PS-TBIM-PCIMBr2的稳定性试验

    Figure  10  Stability test of catalyst PS-TBIM-PCIMBr2

    图  11  催化剂PS-TBIM-PCIMBr2的固定床分析

    Figure  11  The behavior of fixed bed reactor of PS-TBIM-PCIMBr2

    表  1  催化剂的元素分析

    Table  1  Elemental analysis data of catalysts

    EntryCatalystN /%C /%H /%IL grafting amount
    /(mmol·g−1)
    1PS-MIMCl6.2583.947.352.23
    2PS-CPIMBr7.7160.135.632.75
    3PS-TBIM-PCIMBr27.9560.196.711.42
    4PS-TBIM-IMPCOOHTMGBr29.5355.446.110.97
    下载: 导出CSV

    表  2  CO2制备碳酸丙烯酯反应的催化活性a

    Table  2  Catalytic activity of the preparation of propylene carbonate from CO2a

    EntryCatalystSelectivityb /%Yieldb /%
    10
    2PS-Cl0
    3PS-MIMCl9940
    4PS-CPIMBr9983
    5PS-TBIM-PCIMBr29990
    6PS-TBIM-IMPCOOHTMGBr29991
    a: Reaction conditions: PO 0.137 mol, catalyst 20%, 120 ℃, CO2 2 MPa, 4 h; b: Determined by GC analysis
    下载: 导出CSV

    表  3  各种环氧化物与二氧化碳反应的催化活性a

    Table  3  Catalytic activity of various epoxides with carbon dioxidea

    EntryEpoxideCyclic carbonateSelectivityb /%Yieldb/%
    19999
    29999
    39998
    49996
    59968
    69995
    a: Reaction conditions: Epoxide (0.137 mol), PS-TBIM-PCIMBr2 (20%), 120 ℃, CO2 2 MPa, 5 h, b: Determined by GC analysis
    下载: 导出CSV
  • [1] GUO L, DENG L, JIN X, WU H, YIN L. Catalytic conversion of CO2 into propylene carbonate in a continuous fixed bed reactor by immobilized ionic liquids[J]. RSC Adv,2018,8(47):26554−26562. doi: 10.1039/C8RA03952F
    [2] CAO H, LIU S, WANG X. Environmentally benign metal catalyst for the ring-opening copolymerization of epoxide and CO2: State-of-the-art, opportunities, and challenges[J]. Green Chem Eng,2022,3(2):111−124. doi: 10.1016/j.gce.2021.11.005
    [3] REIS N V D, ARRON C, ROSETTO, GLORIA. Heterodinuclear Mg(II)M(II) (M=Cr, Mn, Fe, Co, Ni, Cu and Zn) complexes for the ring opening copolymerization of carbon dioxide/epoxide and anhydride/epoxide[J]. Chem,2022,28(14):e202104198.
    [4] RAZAGHI M, KHORASANI M. Boosting the quaternary ammonium halides catalyzed CO2 coupling with epoxides on the hollow mesoporous silica sphere[J]. J CO2 Util,2022,61:102028.
    [5] GENG H, ZHANG C, TAO M, MA N, ZHANG W. Ionic microenvironment constructed in quaternary ammonium modified polyacrylonitrile fiber for efficient CO2 fixation[J]. J CO2 Util,2021,49:101559. doi: 10.1016/j.jcou.2021.101559
    [6] ZHANG W Y, LUO R C, XU Q H, CHEN Y J, LIN X W, ZHOU X T, JI H B. Transformation of carbon dioxide into valuable chemicals over bifunctional metallosalen catalysts bearing quaternary phosphonium salts[J]. Chin J Catal,2017,38(4):736−744. doi: 10.1016/S1872-2067(17)62802-X
    [7] ZHANG W, LUO R, XU Q, CHEN Y, LIN X, ZHOU X, JI H. Alkali metal salt as catalyst for direct synthesis of carbamate from carbon Dioxide[J]. ACS Sustainable Chem Eng,2018,6(5):6675−6681. doi: 10.1021/acssuschemeng.8b00449
    [8] KANG Y R, WANG B N, NAN R X, LI Y W, ZHU Z L, XIAO X Q. Cyclic carbonate synthesis from epoxides and CO2 catalyzed by aluminum-salen complexes bearing a nido-C2B9 carborane ligand[J]. Inorg Chem,2022,61(23):8806−8814. doi: 10.1021/acs.inorgchem.2c00797
    [9] SANG Y F, CAO Y W, WANG L Z, YAN W, CHEN T, HUANG J W, LIU Y N. N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury(II) adsorption[J]. J Colloid Interface Sci,2021,587:121−130. doi: 10.1016/j.jcis.2020.12.002
    [10] YANG G Y, YU J L, PENG S W, SHENG K, ZHANG H N. Poly(ionic liquid)-modified metal organic framework for carbon dioxide adsorption[J]. Polym,2020,12:370. doi: 10.3390/polym12020370
    [11] ZHANG H, HUO J H, YANG H W, LI F, DUAN C X, XI H X. Green and rapid preparation of hierarchically porous metal-organic zeolites and simulation of their growth[J]. J Mater Chem A,2019,7(3):1022−1029. doi: 10.1039/C8TA08702D
    [12] ZHANG Y, LIU L, XU W G, HAN Z B. MOF@POP core-shell architecture as synergetic catalyst for high-efficient CO2 fixation without cocatalyst under mild conditions[J]. J CO2 Util,2021,46:101463. doi: 10.1016/j.jcou.2021.101463
    [13] HE W F, WEN M S, SHI L J, WANG R M, LI F W. Porous polymeric metalloporphyrin obtained through sonogashira coupling: Catalytic performance at CO2 cycloaddition to epoxides[J]. J Solid State Chem,2022,309:122965.
    [14] ZHAO Y M, PENG Y L, SHAN C, LU Z, WOJTAS L, ZHANG Z, ZHANG B, FENG Y, MA S. Metallocorrole-based porous organic polymers as a heterogeneous catalytic nanoplatform for efficient carbon dioxide conversion[J]. Nano Res,2021,15:1145−1152.
    [15] WANG J J, WANG L Z, WANG Y, YANG F, LI J W, GUAN X Y, ZONG J J, ZHOU F, HUANG J H, LIU Y N. Covalently connected core-shell NH2-UiO-66@Br-COFs hybrid materials for CO2 capture and I2 vapor adsorption[J]. Chem Eng J,2022,438:135555. doi: 10.1016/j.cej.2022.135555
    [16] LI C, LIU F, ZHAO T X, GU J R, CHEN P, CHEN T. Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure[J]. Mol Catal,2021,511:24688231.
    [17] AL-GARNI T, AL-JALLAL N, AOUISSI A. Synthesis of propylene carbonate from epoxide and CO2 catalyzed by carbon nanotubes supported Fe1.5PMo12O40[J]. J Chem,2017,5641604.
    [18] ILIUTA I, LARACHI F, FONTAINE F G. Performance of catalytic cycloaddition of CO2 to styrene oxide in three-phase co-current (micro)fixed-bed and monolith reactors[J]. J CO2 Util,2022,60:101977.
    [19] LONG G C, SU K, DONG H N, ZHAO T X, YANG C L, LIU F, HU X B. Straightforward construction of amino-functionalized ILs@SBA-15 catalysts via mechanochemical grafting for one-pot synthesis of cyclic carbonates from aromatic olefins and CO2[J]. J CO2 Util,2022,59:101962. doi: 10.1016/j.jcou.2022.101962
    [20] 张建, 张志智, 孙潇磊, 孙万付, 方向晨. CO2与环氧丙烷合成碳酸丙烯酯的多相催化剂研究[J]. 天然气化工(C1 化学与化工),2015,40(3):41−44.

    ZHANG Jiang, ZHANG Zhi-zhi, SUN Xiao-lei, SUN Wan-fu, FANG Xiang-cheng. Synthesis of propylene carbonate from CO2 and propylene oxide over a novel heterogeneous catalyst[J]. Nat Gas Chem Ind,2015,40(3):41−44.
    [21] LIU Y, HU Y H, ZHOU J S, ZHU Z Y, ZHANG Z K, LI Y Y, WANG L, ZHANG J L. Polystyrene-supported novel imidazolium ionic liquids: Highly efficient catalyst for the fixation of carbon dioxide under atmospheric pressure[J]. Fuel,2021,305:00162361.
    [22] ZHANG X, GENG W H, YUE C T, WU W, XIAO L F. Multilayered supported ionic liquids bearing a carboxyl group: Highly efficient catalysts for chemical fixation of carbon dioxide[J]. J Environ Chem Eng,2016,4(2):2565−2572. doi: 10.1016/j.jece.2016.05.001
    [23] GUO L Y, DENG L L, JIN X C, WU Hao, YIN L Z. Composite ionic liquids immobilized on MCM-22 as efficient catalysts for the cycloaddition reaction with CO2 and propylene oxide[J]. Catal Lett,2017,147(9):2290−2297. doi: 10.1007/s10562-017-2137-y
    [24] JADHAV A H, THORAT G M, LEE K, LIM A C, KANG H, SEO J G. Effect of anion type of imidazolium based polymer supported ionic liquids on the solvent free synthesis of cycloaddition of CO2 into epoxide[J]. Catal Today,2016,265:56−67. doi: 10.1016/j.cattod.2015.09.048
    [25] ZHANG X, SU D, XIAO L F, WU W. Immobilized protic ionic liquids: Efficient catalysts for CO2 fixation with epoxides[J]. J CO2 Util,2017,17:37−42. doi: 10.1016/j.jcou.2016.11.005
    [26] ZHANG Z Z, SUN X L, ZHANG X W, FANG X C. Catalytic synthesis of propylene carbonate from CO2 and propylene oxide on fixed bed[J]. Catal Lett,2016,146(10):2098−2104. doi: 10.1007/s10562-016-1808-4
    [27] MENG X L, NIE Y, SUN J, CHENG W G, WANG J Q, HE H Y, ZHANG S J. Functionalized dicyandiamide–formaldehyde polymers as efficient heterogeneous catalysts for conversion of CO2 into organic carbonates[J]. Green Chem,2014,16(5):2771−2778. doi: 10.1039/C3GC42331J
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  161
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-03-21
  • 录用日期:  2023-03-22
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回