留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同反应空速下渣油中铁、钙化合物形态转化行为研究

张涛 王现元 崔瑞利 杨欣鹏 张龙力 赵愉生 杨朝合

张涛, 王现元, 崔瑞利, 杨欣鹏, 张龙力, 赵愉生, 杨朝合. 不同反应空速下渣油中铁、钙化合物形态转化行为研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1389-1399. doi: 10.19906/j.cnki.JFCT.2023032
引用本文: 张涛, 王现元, 崔瑞利, 杨欣鹏, 张龙力, 赵愉生, 杨朝合. 不同反应空速下渣油中铁、钙化合物形态转化行为研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1389-1399. doi: 10.19906/j.cnki.JFCT.2023032
ZHANG Tao, WANG Xian-yuan, CUI Rui-li, YANG Xin-peng, ZHANG Long-li, ZHAO Yu-sheng, YANG Chao-he. Study on the transformation behavior of Fe and Ca compounds in residue at different reaction space velocities[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1389-1399. doi: 10.19906/j.cnki.JFCT.2023032
Citation: ZHANG Tao, WANG Xian-yuan, CUI Rui-li, YANG Xin-peng, ZHANG Long-li, ZHAO Yu-sheng, YANG Chao-he. Study on the transformation behavior of Fe and Ca compounds in residue at different reaction space velocities[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1389-1399. doi: 10.19906/j.cnki.JFCT.2023032

不同反应空速下渣油中铁、钙化合物形态转化行为研究

doi: 10.19906/j.cnki.JFCT.2023032
基金项目: 国家自然科学基金(21576292)资助
详细信息
    通讯作者:

    E-mail: llzhang@upc.edu.cn

  • 中图分类号: TE622

Study on the transformation behavior of Fe and Ca compounds in residue at different reaction space velocities

Funds: The project was supported by the National Natural Science Foundation of China (21576292)
  • 摘要: 以不同空速下固定床加氢反应前后的油样为研究对象,考察了渣油中铁、钙化合物在固定床加氢反应过程中赋存形态的转化行为。使用酸解-醇碱法将石油酸盐中的石油酸部分萃取出来。通过红外光谱、元素分析、核磁共振氢谱、核磁共振碳谱、高分辨率质谱等方法对石油酸结构进行表征。为了研究石油酸在受热条件下的转化,将所得到的石油酸进行热重-质谱表征,分析石油酸在热反应中的转化行为,进而推断得到铁、钙化合物在热反应中的转化行为。结果表明,首先,相对于原料样品,反应样品酸值呈现显著下降,由原料的1.01 mg/g下降到0.08 mg/g以下,表明酸性物质形态发生了反应。固定床加氢反应前后渣油中石油酸的主要成分为环烷酸,且以多聚体的形式存在。渣油在固定床加氢反应前后,石油酸出现较为明显的分解,主要产物为CO2、C3H8等物质;随着反应深度的增加,石油酸发生脱羧反应和断链反应的程度增大,使石油酸分解。
  • FIG. 2698.  FIG. 2698.

    FIG. 2698.  FIG. 2698.

    图  1  渣油萃取物的红外光谱谱图

    Figure  1  FT-IR spectra of residue extract

    图  2  加氢前后渣油中石油酸的红外光谱谱图

    Figure  2  FT-IR spectra of petroleum acid in residue before and after hydrogenation

    图  3  加氢前渣油中石油酸的质谱图

    Figure  3  MS of petroleum acid in residue before hydrogenation

    图  4  加氢后渣油C(1.40 h−1)中石油酸的质谱图

    Figure  4  MS of petroleum acid in residue C (1.40 h−1) after hydrogenation

    图  5  加氢后渣油D(1.10 h−1)中石油酸的质谱图

    Figure  5  MS of petroleum acid in residue D (1.10 h−1) after hydrogenation

    图  6  加氢后渣油E(0.60 h−1)中石油酸的质谱图

    Figure  6  MS of petroleum acid in residue E (0.60 h−1) after hydrogenation

    图  7  渣油A石油酸差热变化

    Figure  7  Differential thermal change of resedue A petroleum acid

    图  8  渣油A石油酸气体质谱检测

    Figure  8  Residue A petroleum acid gas mass spectrometry detection

    图  9  渣油C石油酸差热变化

    Figure  9  Differential thermal change of residue C petroleum acid

    图  10  渣油C石油酸尾气质谱检测

    Figure  10  Determination of residue C petroleum acid tail gas by mass spectrometry

    图  11  渣油D石油酸差热变化

    Figure  11  Differential thermal change of residue D petroleum acid

    图  12  渣油D石油酸尾气质谱检测

    Figure  12  Determination of residue D petroleum acid tail gas by mass spectrometry

    图  13  渣油E石油酸差热变化

    Figure  13  Differential thermal change of residue E petroleum acid

    图  14  渣油E石油酸尾气质谱检测

    Figure  14  Residue E petroleum acid tail gas detection by mass spectrometry

    表  1  渣油加氢前后油样的基础物性参数

    Table  1  Basic physical parameters of oil samples before and after residue hydrogenation

    Analysis itemResidual oil A before hydrogenationResidual oil B after hydrogenationResidual oil C after hydrogenationResidual oil D after hydrogenationResidual oil E after hydrogenation
    Density
    (20 ℃) /(g·cm−3)
    0.9920.9780.9710.9730.958
    Colloid stability parameter /(g·g−1)1.761.812.372.052.57
    Acid number /(mg·g−1)1.010.0790.0460.0420.041
    Relative molecular mass /(g·mol−1)864696677665633
    Temperature /°C375375375375
    Pressure /MPa18.018.018.018.0
    Airspeed /h−11.701.401.100.60
    C /%83.5784.4984.8884.985.35
    H /%10.7410.9511.3911.3711.57
    N /%0.320.310.320.310.29
    S /%4.744.183.383.342.78
    Fe /(μg∙g−1)32.320.015.49.387.36
    Ca /(μg∙g−1)8.9210.78.567.545.38
    下载: 导出CSV

    表  2  加氢前后石油酸的元素含量

    Table  2  Element content of petroleum acid before and after hydrogenation

    Oil sampleC/%H/%S/%N/%O*/%H/C (atom ratio)
    Residual oil A before hydrogenation76.010.13.280.839.791.59
    Residual oil B after hydrogenation (1.70 h−1)65.89.382.190.6821.951.71
    Residual oil C after hydrogenation (1.40 h−1)62.89.711.380.4725.641.86
    Residual oil D after hydrogenation (1.10 h−1)62.69.391.640.5225.841.80
    Residual oil E after hydrogenation (0.60 h−1)56.99.590.860.4432.212.02
    *: The content of oxygen element was obtained by reduction method
    下载: 导出CSV

    表  3  加氢前后渣油中石油酸盐结构中各类氢的相对含量

    Table  3  Relative contents of various kinds of hydrogen in petroleum acid structure of residue before and after hydrogenation

    Hydrogen typeSymbolChemical
    shift δ
    Relative amounts of each type of hydrogen /%
    residue A petroleum acidresidue B petroleum acidresidue C petroleum acidresidue D petroleum acidresidue E petroleum acid
    Saturated hydrogen0.5−486.780.380.380.477.1
    The γ site of the aromatic ring and the far CH3 hydrogenHγ0.5−1.0518.212.111.68.828.50
    The β site of the aromatic ring and the far CH2 and CH hydrogenHβ1.05−1.9543.944.744.644.845.8
    The hydrogen attached to the α carbon of the aromatic ringHα1.95−4.024.623.524.126.822.8
    Phenyl cyclic hydrogenHA6.0−9.013.319.719.719.622.9
    下载: 导出CSV

    表  4  加氢前后渣油中石油酸结构中各类碳的相对含量

    Table  4  Relative contents of various kinds of carbon in the petroleum acid structure of residue before and after hydrogenation

    Carbon typeChemical shiftRelative amounts of each type of carbon/%
    residue A petroleum acidresidue B petroleum acidresidue C petroleum acidresidue D petroleum acidresidue E petroleum acid
    Carboxyl carbon178−1843.913.011.921.150.94
    Aromatic carbon100−15054.952.451.1232.9226.4
    Proton aromatic carbon100−127.122.16.5812.9610.314.94
    Bridge head aromatic carbon127.1−13325.722.417.5120.3819.6
    CH3 replaces aryl carbon133−1352.182.381.421.341.26
    Naphthenic aryl carbon135−1371.733.010.580.360.27
    ≥C2 alkyl substituted aryl carbon137−1503.2418.00.040.530.36
    Saturated carbon10−6641.244.646.9665.9372.7
    γ-CH310−153.022.624.915.125.20
    β-CH315−181.600.401.281.050.01
    α-CH3, CH3 replaced by naphthenes18−22.58.575.769.038.037.84
    α-CH2, β-CH2, CH2 substituted by naphthenes22.5−3728.436.430.5744.6957.3
    α-CH, CH substituted by naphthenes37−660.360.591.177.042.24
    下载: 导出CSV

    表  5  加氢反应前后石油酸的类型和相对含量

    Table  5  Types of petroleum acids before and after hydrogenation

    Unsaturation ΩCarboxylic acid typeRelative amounts /%
    residue A petroleum acidresidue C petroleum acidresidue D petroleum acidresidue E petroleum acid
    1fatty acid9.111.415.824.6
    2monocyclic acid20.622.723.622.2
    3dicyclic naphthenic acid29.128.928.825.9
    4tricyclic carboxylic acid19.617.417.414.6
    5tetracyclic naphthenic acid/aryclic carboxylic acid8.095.716.415.6
    6pentacyclic naphthenic acid/aromatic cyclic monocyclic carboxylic acid6.096.875.413.79
    7hexacyclic naphthenic acid/aryclic dicyclic carboxylic acid7.556.973.563.21
    下载: 导出CSV
  • [1] QI L Q, LI J T, YAO Y, ZHANG Y J. Heavy metal poisoned and regeneration of selective catalytic reduction catalysts[J]. J Hazard Mater,2019,366:492−500. doi: 10.1016/j.jhazmat.2018.11.112
    [2] JIANG H, KENNETH J L, SHANKHAMALA K, CHENG W C. Characterization of iron contamination on equilibrium fluid catalytic cracking catalyst particles[J]. J Catal,2018,361:126−134. doi: 10.1016/j.jcat.2018.02.025
    [3] MARAFI A, ALBAZZAZ H, RANA M S. Hydroprocessing of heavy residual oil: Opportunities and challenges[J]. Catal Today,2019,329:125−134. doi: 10.1016/j.cattod.2018.10.067
    [4] ETIM U J, BAI P, ULLAH R, SUBHAN F, YAN Z F. Vanadium contamination of FCC catalyst: Understanding the destruction and passivation mechanisms[J]. Appl Catal A: Gen,2018,555:108−117. doi: 10.1016/j.apcata.2018.02.011
    [5] PSARRAS A C, ILIOPOULOU E F, NALBANDIAN L, LAPPAS A A, POUWELS C. Study of the accessibility effect on the irreversible deactivation of FCC catalysts from contaminant feed metals[J]. Catal Today,2007,127(1-4):44−53. doi: 10.1016/j.cattod.2007.05.021
    [6] CERQUEIRA H S, CAEIRO G, COSTA L, RAMOA R F. Deactivation of FCC catalysts[J]. J Mol Catal A: Chem,2008,292(1-2):1−13. doi: 10.1016/j.molcata.2008.06.014
    [7] ORTIGUEIRA J, ALVES L, GOUVEIA L, MOURA P. Third generation biohydrogen production by clostridium butyricum and adapted mixed cultures from scenedesmus obliquus microalga biomass[J]. Fuel,2015,153:128−134. doi: 10.1016/j.fuel.2015.02.093
    [8] 侯典国, 汪燮卿. 我国一些原油中钙化合物分布及形态的研究[J]. 石油学报(石油加工),2000,16(1):54−59.

    HOU Dian-guo, WANG Xie-qing. Study on distribution and morphology of calcium compounds in some crude oil in our country[J]. Acta Pet Sin(Pet Proc Sect),2000,16(1):54−59.
    [9] 王现元, 张涛, 张龙力, 赵愉生, 边钰清, 杨朝合. 渣油加氢反应样品中含铁和含钙化合物溶解性能研究[J]. 燃料化学学报,2021,49(6):771−779. doi: 10.1016/S1872-5813(21)60053-1

    WANG Xian-yuan, ZHANG Tao, ZHANG Long-li, ZHAO Yu-sheng, BIAN Yu-qing, YANG Chao-he. Study on dissolution properties of iron and calcium containing compounds in residual oil hydroreaction samples[J]. J Fuel Chem Technol,2021,49(6):771−779. doi: 10.1016/S1872-5813(21)60053-1
    [10] 邹滢, 宋丽, 翁惠新. 辽河减压渣油中铁的赋存与分布特征[J]. 石油炼制与化工,2007,38(11):60−64. doi: 10.3969/j.issn.1005-2399.2007.11.014

    ZOU Ying, SONG Li, WENG Hui-xin. The occurrence and distribution characteristics of Liaohe vacuum residuum railway[J]. Pet Process Petrochem,2007,38(11):60−64. doi: 10.3969/j.issn.1005-2399.2007.11.014
    [11] 赵元生, 赵愉生, 夏恩冬, 张龙力, 张志国, 宋元栋. 上流式反应器用于劣质渣油加氢处理的初步探索[J]. 石油化工,2016,45(11):1363−1368. doi: 10.3969/j.issn.1000-8144.2016.11.013

    ZHAO Yuan-sheng, ZHAO Yu-sheng, XIA Dong-en, ZHANG Long-li, ZHANG Zhi-guo, SONG Yuan-dong. Preliminary study on the upflow reactor for the hydrotreating of inferior residual oil[J]. Chin Petrochem Technol,2016,45(11):1363−1368. doi: 10.3969/j.issn.1000-8144.2016.11.013
    [12] 蒋迪, 王大鸷, 徐同宽, 张绍印. 辽河油田减二线柴油中环烷酸的脱除[J]. 大连工业大学学报,2012,31(2):123−126.

    JIANG Di, WANG Da-zhi, XU Tong-kuan, ZHANG Shao-yin. Removal of naphthenic acid from reduced second line diesel oil in Liaohe Oilfield[J]. J Dalian Inst Technol,2012,31(2):123−126.
    [13] 郑盟主, 戴俊峰, 袁宏强, 马永清, 王亚波, 赵永平. 高酸原油脱酸工艺条件优化[J]. 石油化工应用,2016,35(5):135−138.

    ZHENG Meng-zhu, DAI Jun-feng, YUAN Hong-qiang, MA Yong-qing, WANG Ya-bo, ZHAO Yong-ping. Optimization of deacidification process of high acid crude oil[J]. Petrochem Inst Appl,2016,35(5):135−138.
    [14] WANG X Y, ZHANG T, ZHANG L L, ZHAO Y S, YANG C H, CUI R L. Distribution and form of iron and calcium compounds before and after residue hydrogenation under different space velocities[J]. China Pet Process Petrochem Technol,2022,24(3):86−94.
    [15] 龚剑洪, 陆善祥, 崔建, 贺彩霞. 国产重油组成的表征[J]. 石油炼制与化工,2000,31(10):48−53.

    GONG Hong-jian, LU Shan-xiang, CUI Jian, HE Cai-xia. Characterization of domestic heavy oil composition[J]. Pet Process Petrochem,2000,31(10):48−53.
    [16] 鲁阿信, 肖光, 付新梅, 胡侠. 达尔原油中石油酸的结构组成分析[J]. 石油化工,2010,39(10):48−53.

    LU A-xin, XIAO Guang, FU Xin-mei, HU Xia. Structure and composition analysis of oleic acid in Dahl crude oil[J]. Chin Petrochem Technol,2010,39(10):48−53.
    [17] 刘泽龙, 田松柏, 樊雪志, 杨明彪. 蓬莱原油初馏点 ~ 350 ℃馏分中石油羧酸的结构组成[J]. 石油学报(石油加工),2003,19(6):40−45.

    LIU Ze-long, TIAN Song-bai, FAN Xue-zhi, YANG Ming-biao. Structural composition of petroleum carboxylic acids in the initial distillate point ~ 350 ℃ fraction of Penglai Crude Oil[J]. Acta Pet Sin(Pet Proc Sect),2003,19(6):40−45.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  177
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-03-21
  • 录用日期:  2023-03-22
  • 网络出版日期:  2023-04-25
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回