留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PtCo/CNTs-C纳米催化剂的制备及甲醇电催化氧化性能研究

白雪丽 仇豪雷 赵子龙 刘煜成 王峰 张胜健 张小平

白雪丽, 仇豪雷, 赵子龙, 刘煜成, 王峰, 张胜健, 张小平. PtCo/CNTs-C纳米催化剂的制备及甲醇电催化氧化性能研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1298-1305. doi: 10.19906/j.cnki.JFCT.2023043
引用本文: 白雪丽, 仇豪雷, 赵子龙, 刘煜成, 王峰, 张胜健, 张小平. PtCo/CNTs-C纳米催化剂的制备及甲醇电催化氧化性能研究[J]. 燃料化学学报(中英文), 2023, 51(9): 1298-1305. doi: 10.19906/j.cnki.JFCT.2023043
BAI Xue-li, QIU Hao-lei, ZHAO Zi-long, LIU Yu-cheng, WANG Feng, ZHANG Sheng-jian, ZHANG Xiao-ping. Preparation of PtCo/CNTs-C nanocatalysts and electrocatalytic oxidation performance of methanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1298-1305. doi: 10.19906/j.cnki.JFCT.2023043
Citation: BAI Xue-li, QIU Hao-lei, ZHAO Zi-long, LIU Yu-cheng, WANG Feng, ZHANG Sheng-jian, ZHANG Xiao-ping. Preparation of PtCo/CNTs-C nanocatalysts and electrocatalytic oxidation performance of methanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1298-1305. doi: 10.19906/j.cnki.JFCT.2023043

PtCo/CNTs-C纳米催化剂的制备及甲醇电催化氧化性能研究

doi: 10.19906/j.cnki.JFCT.2023043
基金项目: 山西省高等学校科技创新计划(2022L555) 和山西省自然科学基金(202203021212333)资助
详细信息
    通讯作者:

    E-mail: 1037400468@qq.com

  • ‡为共同一作
  • 中图分类号: TQ116.2; TQ426; TB383.1

Preparation of PtCo/CNTs-C nanocatalysts and electrocatalytic oxidation performance of methanol

Funds: The project was supported by Project of Scientific and Technological Innovation Plan of Shanxi Institutions of Higher learning (2022L555) and Science and Natural Foundation of Shanxi Province (202203021212333)
  • 摘要: 以碳纳米管(CNTs)和XC-72R炭黑混合材料为载体,采用浸渍还原法制备了具有较高的电化学活性的催化材料PtCo/CNTs-C。采用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了结构表征。并将该材料用作了甲醇阳极氧化催化剂,考察了不同Co掺杂量以及温度对反应的影响。结果表明,PtCo/CNTs-C纳米催化剂中铂钴双金属形成合金,合金粒子在载体表面分布相对均匀。炭黑和金属Co的引入赋予了催化剂更高的催化活性。当Pt∶Co的质量比为94∶6时,催化剂对甲醇的催化氧化具有更低的起始电位(−0.651V(vs SCE))和更高的电流密度(86.74 mA/cm2),且计时电流测试表明催化剂拥有良好的稳定性。
    1)  ‡为共同一作
  • 图  1  Pt/CNTs、Pt/CNTs-C、PtCo/CNTs-C和PtCo/CNTs复合催化剂的XRD谱图

    Figure  1  XRD pattems of Pt/CNTs、Pt/CNTs-C、PtCo/CNTs-C and PtCo/CNTs composite catalysts

    图  2  Pt/CNTs(a)、Pt/CNTs-C(b)和PtCo/CNTs-C(c)的TEM照片及PtCo/CNTs-C(d)和Pt/CNTs-C(e)的HRTEM照片

    Figure  2  TEM images of Pt/CNTs (a), Pt/CNTs-C (b) and PtCo/CNTs-C (c) HRTEM images of PtCo/CNTs-C (d) and Pt/CNTs-C (e)

    图  3  PtCo/CNTs-C和Pt/CNTs-C催化剂的XPS谱图

    Figure  3  XPS profiles of PtCo/CNTs-C and Pt/CNTs-C

    图  4  催化剂在PtNi/CNTs和Pt/CNTs和电化学阻抗谱图

    Figure  4  Cyclic voltammetry (a) and electrochemical impedance spectra (b) of catalysts in 1.0 mol/L KOH-1.0 mol/L methanol solution

    图  5  催化剂在1.0 mol/L KOH-1.0 mol/L CH3OH溶液中的循环伏安曲线(a)和电化学阻抗谱图(b)

    Figure  5  Cyclic voltammetry (a) and electrochemical impedance spectra (b) of catalysts in 1.0 mol/L KOH-1.0 mol/L methanol solution

    图  6  催化剂在1.0 mol/L KOH/1.0 mol/L CH3OH溶液中的线性扫描曲线

    Figure  6  Linear sweep curves of catalyst in 1.0 mol/ L KOH/1.0 mol/L methanol solution

    图  7  催化剂在催化剂在1.0 mol/L KOH/1.0 mol/L CH3OH溶液中的计时电流曲线

    Figure  7  Chronoamperometric curve of catalyst in 1.0 mol/L KOH/1.0 mol/L methanol solution

    图  8  不同温度下PtCo/CNTs-C电催化氧化的循环伏安曲线

    Figure  8  Cyclic voltammetry curves of PtCo/CNTs-C for electrocatalytic oxidation at different temperatures

    图  9  PtCo/CNTs-C不同扫描速率电催化氧化的循环伏安曲线(a)和I vs (V/s)1/2(b)

    Figure  9  Cyclic voltammetry curves of PtCo/CNTs-C for electrocatalytic oxidation at different scanning rates and I vs (V/s)1/2(b)

  • [1] LIANG H, ZHANG X, WANG Q. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. JASC,2018,140(3):1142−81147. doi: 10.1021/jacs.7b12353
    [2] KAMARUDIN S K, ACHMAD F, DAUD W R W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices[J]. Int J Hydrog Energy,2009,34(16):6902−6916. doi: 10.1016/j.ijhydene.2009.06.013
    [3] 张曼, 龙梅, 刘艳红, 乌伊罕. 直接甲醇燃料电池阳极催化剂及电催化稳定性研究[J]. 化工新型材料,2016,44(9):59−60.

    ZHANG Man, LONG Mei, LIU Yan-hong, WU Yi-han. Study on anodic catalyst and electrocatalytic stability of direct methanol fuel cells[J]. New Chem Mater.,2016,44(9):59−60.
    [4] 罗远来, 梁振兴, 廖世军. 直接甲醇燃料电池阳极催化剂研究进展[J]. 催化学报,2010,31(2):141−149.

    LUO Yuan-lai, LIANG Zhen-xing, LIAO Shi-jun. Research progress of anodic catalysts for direct methanol fuel cells[J]. Chin J Catal,2010,31(2):141−149.
    [5] 刘明义, 何源清, 毛宗强, 谢晓峰. 质子交换膜燃料电池阳极电催化剂CO中毒机理[J]. 电源技术,2002,26:247−249.

    LIU Ming-yi, HE Yuan-qing, MAO Zong-qiang, XIE Xiao-feng. CO-poisoning mechanism of anodic electrocatalyst in proton-exchange membrane fuel cell[J]. J Power Sources,2002,26:247−249.
    [6] 郭仕权, 孙亚昕, 李从举. 直接甲醇燃料电池(DMFC)阳极过渡金属基催化剂的研究进展[J]. 工程科学学报, 2022, 44(4): 625−640.

    GUO Shi-quan, SUN Ya-xin, LI Cong-ju. Research progress of transition metal-based catalyst for direct methanol fuel cell (DMFC) anode[J]. Chin J Eng Sci, 2022, 44(4): 625−640.
    [7] WANG Z H, SHI G Y, XIA J F, ZHANG F F, XIA Y Z, LI Y H, XIA L H. Research progress of PT-based anode catalysts for direct methanol fuel cells[J]. Chin J Chem,2013,71(9):1225−1238.
    [8] 佟永纯, 张丹, 王春艳, 孙启稿, 王欣, 王清云. 石墨烯基PtCu二元金属催化剂对甲醇吸附性能的理论研究[J]. 原子与分子物理学报,2021,38(6):53−58.

    TONG Yong-chun, ZHANG Dan, WANG Chun-yan, SUN Qi-wen, WANG Xin, WANG Qing-yun. Theoretical study on the adsorption performance of methanol by graphene based PtCu binary metal catalyst[J]. J Atom Mol Phys,2021,38(6):53−58.
    [9] ZHAO X Y, WU Y E. Synthesis of high activity and low load PtCo/C proton exchange membrane fuel cell catalyst[J]. Chin J Inor Chem,2021,37(8):1457−1464.
    [10] 刘欢, 陈维民, 王媛. 壳聚糖修饰甲醇燃料电池PtRu催化剂[J]. 电源技术,2017,41(1):52−53.

    LIU Huan, CHEN Wei-min, WANG Yuan. PtRu catalyst for methanol fuel cells modified with chitosan[J]. J Power Sources,2017,41(1):52−53.
    [11] LUO B, ZHAO F, XIE Z. Polyhedron-assembled ternary PtCuCo nanochains: integrated functions enhance the electrocatalytic performance of methanol oxidation at elevated temperature[J]. ACS Appl Mater Interfaces,2019,11(35):32282. doi: 10.1021/acsami.9b10192
    [12] WANG Y J, ZHAO N, FANG B. A highly efficient PtCo/C electrocatalyst for the oxygen reduction reaction[J]. RSC Adv,2016,6(41):34484−34491. doi: 10.1039/C6RA02322C
    [13] XC LIU, GC WANG, RP LIANG, L SHI, JD QIU. Environment-friendly facile synthesis of Pt nanoparticles supported on polydopamine modified carbon materials[J]. J Mater Chem,2013,1:3945−3945. doi: 10.1039/c3ta00527e
    [14] LIU Z, FENG Y, WU X. Preparation and enhanced electrocatalytic activity of graphene supported palladium nanoparticles with multi-edges and corners[J]. RSC Adv,2016,6(101):98708−98716. doi: 10.1039/C6RA20827D
    [15] GUO J, SUN G, QI W. Carbon nanofibers supported Pt-Ru electrocatalysts for direct methanol fuel cells[J]. Carbon,2006,44(1):152−157. doi: 10.1016/j.carbon.2005.06.047
    [16] XIN W, LI W, CHEN Z. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell[J]. J Power Sources,2006,158(1):154−159. doi: 10.1016/j.jpowsour.2005.09.039
    [17] DICKS A L. The role of carbon in fuel cells[J]. J Power Sources,2006,156(2):128−141. doi: 10.1016/j.jpowsour.2006.02.054
    [18] ZHENG L, LI Z, FENG W. Synthesis of multi-walled carbon nanotube supported nickel catalysts by hydrazine reduction and their electrocatalytic activity on ethanol electro-oxidation[J]. Mater Lett,2011,65(23/24):3396−3398. doi: 10.1016/j.matlet.2011.07.068
    [19] 陈伟, 廖卫平, 金明善, 索掌怀. 壳聚糖修饰炭黑负载Pt-Au催化剂对甲醇氧化的电催化性能[J]. 燃料化学学报, 2012, 40(12): 1459−1465.

    CHEN Wei, LIAO Wei-ping, JING Ming-shan, SUO Zhang-huai. Electrocatalytic performance of Pt-Au catalyst supported on carbon black modified by chitosan for methanol oxidation[J] J Fuel Chem Technol, 2012, 40(12): 1459−1465.
    [20] SUDACHOM N, WARAKULWIT C, PRAPAINAINAR C, WITOON T, PRAPAINAINAR P. One step NaBH4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: Synthesis and characte rization[J]. J Fuel Chem Technol,2017,45(5):596−607. doi: 10.1016/S1872-5813(17)30031-2
    [21] KURIGANOVA A B, LEONTYEV I N, ALEXANDRIN A S, MASLOVA O A, RAKHMATULLIN A I, SMIRNOVA N V. Electrochemically synthesized Pt/TiO2-C catalysts for direct methanol fuel cell applications[J]. Mendeleev Commun,2017,27(1):67−69. doi: 10.1016/j.mencom.2017.01.021
    [22] 周阳, 胡仙超, 刘喜慧, 屈慧男, 温和瑞, 余长林. 中空树枝状三氧化钨载铂催化剂对甲醇的电催化氧化性能研究[J]. 燃料化学学报,2015,43(2):251−256.

    ZHOU Yang, HU Xian-chao, LIU Xi-hui, JU Hui-nan, WEN He-rui, YU Chang-lin. Study on electrocatalytic oxidation of methanol by hollow dendrite tungsten trioxide supported platinum catalyst[J]. J Fuel Chem Technol,2015,43(2):251−256.
    [23] JALAN R, TURJANSKI N, TAYLOR-ROBINSON S D, KOEPP M J, RICHARDSON M P, WILSON J A, BELL J D, BROOKS D J. Increased availability of central benzodiazepine receptors in patients with chronic hepatic encephalopathy and alcohol related cirrhosis[J]. Gut,2000,46(4):546. doi: 10.1136/gut.46.4.546
    [24] MANSOR M, TIMMIATI S N, LIM K L. Recent progress of anode catalysts and their support materials for methanol electrooxidation reaction[J]. Int J Hydrogen Energy,2019,44(29):14744−14769. doi: 10.1016/j.ijhydene.2019.04.100
    [25] 吕银荣, 孙维艳, 王峰. 用于直接甲醇燃料电池的高活性PtCo-CNT@TiO2复合纳米阳极催化剂[J]. 燃料化学学报,2019,47(12):1522−1528.

    LÜ Yin-rong, SUN Wei-yan, WANG Feng. High activity PtCo-CNT@TiO2 composite anode catalyst for direct methanol fuel cells[J]. J Fuel Chem Technol,2019,47(12):1522−1528.
    [26] VILIAN A, HWANG S K, KWAK C H. Pt-Au bimetallic nanoparticles decorated on reduced graphene oxide as an excellent electrocatalysts for methanol oxidation[J]. Synthetic Metals,2016,219:52−59. doi: 10.1016/j.synthmet.2016.04.013
    [27] YU Z Z. Research progress of direct methanol fuel cells and their anodic catalysts[J]. Guangzhou Chem, 2020, 45(5): 15−22.
  • 加载中
图(10)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  130
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-05-08
  • 录用日期:  2023-05-08
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回