留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管模板导向制备煤沥青基电热材料及其性能调控研究

郭君卓 雷智平 闫洪雷 贾同鑫 杨雪 李占库 颜井冲 水恒福 任世彪 王知彩 康士刚

郭君卓, 雷智平, 闫洪雷, 贾同鑫, 杨雪, 李占库, 颜井冲, 水恒福, 任世彪, 王知彩, 康士刚. 碳纳米管模板导向制备煤沥青基电热材料及其性能调控研究[J]. 燃料化学学报(中英文), 2024, 52(3): 405-412. doi: 10.19906/j.cnki.JFCT.2023049
引用本文: 郭君卓, 雷智平, 闫洪雷, 贾同鑫, 杨雪, 李占库, 颜井冲, 水恒福, 任世彪, 王知彩, 康士刚. 碳纳米管模板导向制备煤沥青基电热材料及其性能调控研究[J]. 燃料化学学报(中英文), 2024, 52(3): 405-412. doi: 10.19906/j.cnki.JFCT.2023049
GUO Junzhuo, LEI Zhiping, YAN Honglei, JIA Tongxin, YANG Xue, LI Zhanku, YAN Jingchong, SHUI Hengfu, REN Shibiao, WANG Zhicai, KANG Shigang. Facile preparation of pitch-derived carbon for high electrically conductive composites via carbon nanotube template[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 405-412. doi: 10.19906/j.cnki.JFCT.2023049
Citation: GUO Junzhuo, LEI Zhiping, YAN Honglei, JIA Tongxin, YANG Xue, LI Zhanku, YAN Jingchong, SHUI Hengfu, REN Shibiao, WANG Zhicai, KANG Shigang. Facile preparation of pitch-derived carbon for high electrically conductive composites via carbon nanotube template[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 405-412. doi: 10.19906/j.cnki.JFCT.2023049

碳纳米管模板导向制备煤沥青基电热材料及其性能调控研究

doi: 10.19906/j.cnki.JFCT.2023049
基金项目: 国家自然科学基金(21878001, 22078002, 22108004, 21978002, 22008001)资助
详细信息
    通讯作者:

    E-mail: zplei@ahut.edu.cn

    li_zhanku@163.com

  • 中图分类号: TQ530

Facile preparation of pitch-derived carbon for high electrically conductive composites via carbon nanotube template

Funds: The project was supported by the National Natural Science Foundation of China (21878001, 22078002, 22108004, 21978002, 22008001)
  • 摘要: 本研究以煤沥青为原料、多壁碳纳米管为结构导向剂,通过炭化制备了形貌和结构可控的煤沥青基碳膜,考察了多壁碳纳米管对导电填料结构及碳膜电热性能的影响规律。研究发现,多壁碳纳米管掺杂导致导电填料的晶格排列有序度增加、晶格间距减小和石墨化程度提高;多壁碳纳米管的引入提高了碳膜的载流子浓度,进而显著提高了其导电性。掺杂2%碳纳米管,可使煤沥青基碳膜的载流子浓度提高3.2倍、电阻降低67%;在5、10和15 V电压下,煤沥青基碳膜的发热温度分别可达44、88和165 ℃,相对未掺杂碳膜分别提高了7、22和70 ℃,显示出极大的应用前景。
  • FIG. 3019.  FIG. 3019.

    FIG. 3019.  FIG. 3019.

    图  1  SEM照片:(a)、(b) PC;(c)、(d) PCNT2; TEM照片(e)、(f) PC;(g)、(h) PCNT2

    Figure  1  SEM images of PC (a), (b) and PCNT2 (c), (d); TEM images of PC (e), (f) and PCNT2 (g), (h)

    图  2  煤沥青基导电炭材料的(a)拉曼光谱谱图和(b)XRD谱图

    Figure  2  Raman (a) and XRD (b) spectra of coal pitch-derived conductive carbon materials

    图  3  煤沥青基导电碳填料的XPS 总谱图

    Figure  3  Wide XPS (a), C 1s (b), O 1s (c) and N 1s (d) spectra of coal pitch-derived conductive carbon materials; Elemental contents (e); sp2 and sp3 carbon contents (f)

    图  4  煤沥青基碳膜的载流子浓度(a);载流子迁移率(b)和体积电阻率(c)

    Figure  4  Carrier concentration (a), carrier mobility (b), and volume resistivity (c) of coal pitch-derived conductive carbon materials

    图  5  煤沥青基碳膜的焦耳加热性能

    Figure  5  Joule heating performance of coal pitch-derived conductive carbon materials at 5 V (a), 10 V (b) and 15 V (c)

    图  6  PC和PCNT2所制备碳膜在不同电压下的升温、降温曲线

    Figure  6  Temperature raising curves (a) and dropping curves (b) of carbon film obtained from PC under different voltage; Temperature raising curves (c) and dropping curves (d) of carbon film obtained from PCNT2 under different voltage

    图  7  (a) PCNT2在15 V下的焦耳加热性能的稳定性测试;(b) 磨损对PCNT2在15 V下的焦耳热性能的影响;(c) PC、PCG和PCNT2在15 V下的焦耳热性能

    Figure  7  (a) Joule heating stability of PCNT2 at 15 V, (b) Effect of abrasion on Joule heating performance of PCNT2 at 15 V, and (c) Joule heating performance of PC, PCG, and PCNT2 at 15 V

    表  1  煤沥青基碳膜的附着性能

    Table  1  Adhesion performance of coal pitch-derived carbon films

    SampleAdhesion grade
    PC2 B
    PCNT13 B
    PCNT23 B
    PCNT52 B
    SBR-PCNT25 B
    MMA-PCNT25 B
    5B: Smooth of the edge of the incision and no peeling at the edge of the grid area; 4B: Small pieces peeling off at the intersection of the incision and the actual damage in the grid area not exceed 5%; 3B: Exfoliation of the edge of the incision with area greater than 5% but less than 15%; 2B: Exfoliation of the edge of the incision with area greater than 15% but less than 35%.
    下载: 导出CSV

    表  2  煤沥青基碳膜的防腐性能

    Table  2  Anticorrosion performance of coal pitch-derived carbon films

    PCPCNT1PCNT2PCNT5
    H2ONONONONO
    EthanolNONONONO
    1M NaClNONONONO
    1M H2SO4NONONONO
    1M HClNONONONO
    1M NaOHNONONONO
    下载: 导出CSV
  • [1] YANG P, GHOSH S, XIA T, et al. Joule Heating and mechanical properties of epoxy/graphene based aerogel composite[J]. Compost Sci Technol,2022,218:109199. doi: 10.1016/j.compscitech.2021.109199
    [2] ZHANG Q, YU Y, YANG K, et al. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers[J]. Carbon,2017,124:296−307. doi: 10.1016/j.carbon.2017.09.001
    [3] BA H, TRUONG-PHUOC L, ROMERO T, et al. Lightweight, few-layer graphene composites with improved electro-thermal properties as efficient heating devices for de-icing applications[J]. Carbon,2021,182:655−668.
    [4] MA J, JIANG H, HU S, et al. Ultraviolet light crosslinked graphene/multi-walled carbon nanotube hybrid films for highly robust, efficient and flexible electrothermal heaters[J]. Compost Sci Technol,2022,221:109183. doi: 10.1016/j.compscitech.2021.109183
    [5] IMAI M, AKIYAMA K, TANAKA T, et al. Highly strong and conductive carbon nanotube/cellulose composite paper[J]. Compost Sci Technol,2010,70(10):1564−1570. doi: 10.1016/j.compscitech.2010.05.023
    [6] RAJI A R, VARADHACHARY T, NAN K, et al. Composites of graphene nanoribbon stacks and epoxy for Joule heating and deicing of surfaces[J]. ACS Appl Mater Interfaces,2016,8(5):3551−3556. doi: 10.1021/acsami.5b11131
    [7] JIANG M, SUN N, ALI SOOMRO R, et al. The recent progress of pitch-based carbon anodes in sodium-ion batteries[J]. J Energy Chem,2021,55:34−47. doi: 10.1016/j.jechem.2020.07.002
    [8] LIU C, ZHENG H, WANG Y, et al. Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries[J]. J Colloid Interface Sci,2022,615:485−493. doi: 10.1016/j.jcis.2022.01.178
    [9] ZHANG G, GUAN T, QIAO J, et al. Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors[J]. Energy Storage Mater,2020,26:119−128. doi: 10.1016/j.ensm.2019.12.038
    [10] LI Y, LEI Z, YANG X, et al. Coal tar-derived conductive pigment/polyvinylidene fluoride composite for Joule heating[J]. Prog Organ Coat,2023,174:107288. doi: 10.1016/j.porgcoat.2022.107288
    [11] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat Nanotechnol,2013,8(4):235−246. doi: 10.1038/nnano.2013.46
    [12] LEE W J, CLANCY A J, FERNÁNDEZ-TORIBIO J C, et al. Interfacially-grafted single-walled carbon nanotube/poly(vinyl alcohol) composite fibers[J]. Carbon,2019,146:162−171. doi: 10.1016/j.carbon.2019.01.075
    [13] LEI Z, LI Y, LEI Z, et al. Enhanced electrical conductivity of pitch-derived carbon via graphene template effects for high electrically conductive composites[J]. J Ind Eng Chem,2023,117:394−401. doi: 10.1016/j.jiec.2022.10.027
    [14] MINUS M L, CHAE H G, KUMAR S. Interfacial crystallization in gel-spun poly(vinyl alcohol)/single-wall carbon nanotube composite fibers[J]. Macromol Chem Phys,2009,210(21):1799−1808. doi: 10.1002/macp.200900223
    [15] CUNNING B V, WANG B, SHIN T J, et al. Structure-directing effect of single crystal graphene film on polymer carbonization and graphitization[J]. Mater Horiz,2019,6(4):796−801. doi: 10.1039/C8MH01507D
    [16] TORRES-CANAS F, BENTALEB A, FӦLLMER M, et al. Improved structure and highly conductive lignin-carbon fibers through graphene oxide liquid crystal[J]. Carbon,2020,163:120−127. doi: 10.1016/j.carbon.2020.02.077
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  140
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2023-06-05
  • 录用日期:  2023-06-05
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回