留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物乙醇制高级醇催化剂研究进展

王文文 逯炀炀 李治宇 张玉春 付鹏

王文文, 逯炀炀, 李治宇, 张玉春, 付鹏. 生物乙醇制高级醇催化剂研究进展[J]. 燃料化学学报(中英文), 2024, 52(4): 461-480. doi: 10.19906/j.cnki.JFCT.2023061
引用本文: 王文文, 逯炀炀, 李治宇, 张玉春, 付鹏. 生物乙醇制高级醇催化剂研究进展[J]. 燃料化学学报(中英文), 2024, 52(4): 461-480. doi: 10.19906/j.cnki.JFCT.2023061
WANG Wenwen, LU Yangyang, LI Zhiyu, ZHANG Yuchun, FU Peng. Research progress in catalysts for producing higher alcohols from bioethanol[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 461-480. doi: 10.19906/j.cnki.JFCT.2023061
Citation: WANG Wenwen, LU Yangyang, LI Zhiyu, ZHANG Yuchun, FU Peng. Research progress in catalysts for producing higher alcohols from bioethanol[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 461-480. doi: 10.19906/j.cnki.JFCT.2023061

生物乙醇制高级醇催化剂研究进展

doi: 10.19906/j.cnki.JFCT.2023061
基金项目: 国家自然科学基金(51976112,52206264), 山东省高等学校青年创新团队发展计划(2023KJ333)和山东省属普通本科高校教师访学研修经费资助
详细信息
    通讯作者:

    Tel: 15689002285,15064314128, E-mail: lizhiyu@sdut.edu.cn

    fupengsdut@163.com

  • 中图分类号: O643.3

Research progress in catalysts for producing higher alcohols from bioethanol

Funds: The project was supported by the National Natural Science Foundation of China (51976112, 52206264), Youth Innovation Support Program of Shandong Colleges and Universities (2023KJ333), the visiting Training Funds for Teachers from Ordinary Undergraduate Colleges and Universities in Shandong Province.
  • 摘要: 与乙醇相比,高级醇具有高的十六烷值、高能量密度、对发动机部件无腐蚀性、与水不混溶、稳定性好等直接作为燃料或燃料添加剂的优势,将发酵产生的生物乙醇转化为更有价值的高级醇受到了广泛关注。本工作综述了近年来世界各国有关生物乙醇制高级醇的研究进展,包括金属氧化物、羟基磷灰石(HAP)和负载型金属催化剂的研究开发现状,并比较了不同类型催化剂参与下的乙醇转化率和高级醇选择性,结合乙醇经缩合反应制备高级醇的机理进行了讨论,最后对当前生物乙醇制高级醇的挑战以及未来研究趋势进行了总结与展望,指出多功能催化剂的开发是未来研究重点,羟醛缩合是进一步提高生物乙醇制高级醇转化率与选择性的有效策略。
  • FIG. 3072.  FIG. 3072.

    FIG. 3072.  FIG. 3072.

    图  1  乙醇的转化途径[11]

    Figure  1  Conversion pathway of ethanol[11] (with permission from Springer Nature Publications)

    图  2  木质纤维素生物质发酵制生物乙醇[14]

    Figure  2  Fermentation of lignocellulose biomass to produce bioethanol[14] (with permission from Elsevier Publications)

    图  3  采用CO2/NH3-TPD对催化剂的酸碱度进行表征[21]

    Figure  3  Characterization of the acidity and alkalinity of the catalyst using CO2/NH3-TPD[21]

    图  4  Co0.15Mg2.85AlOx催化剂的催化性能[23]

    Figure  4  Catalytic performance of Co0.15Mg2.85AlOx catalyst[23] (with permission from RSC Publications)

    图  5  OM-CuxLayAl100催化剂的反应路径和机理[24]

    Figure  5  Reaction path and mechanism of OM-CuxLayAl100 catalyst[24] (with permission from Elsevier Publications)

    图  6  Cu-HAP催化剂的催化性能和反应路径[29]

    Figure  6  Catalytic performance and reaction pathway of Cu HAP catalyst[29] (with permission from ACS Publications)

    图  7  (a)多孔BAP-Ni上的反应途径; (b)无孔BAP-Ni催化剂[30]

    Figure  7  Reaction pathway on (a) porous BAP-Ni; (b) nonporous BAP-Ni catalyst[30] (with permission from ACS Publications)

    图  8  (a) 8 h 后的产物选择性:使用MgAl(2/1)负载量分别为 2.5 g/L(白色)和 10 g/L(紫色)或HAP 2.5 g/L(黄色)和10 g/L(棕色);(b) 8 h 后的产物分布:MgAl (2/1) (白色);Cu/MgAl (蓝色);Ru/MgAl (黄色);Pd/MgAl (绿色);Pt/MgAl (灰色)[42]

    Figure  8  (a) Product selectivity after 8 h: Using MgAl (2/1) with loading amounts of 2.5 g/L (white) and 10 g/L (purple) or HAP 2.5 g/L (yellow) and 10 g/L (brown); (b) Product distribution after 8 h: MgAl (2/1) (white); Cu/MgAl (blue); Ru/MgAl (yellow); Pd/MgAl (green); Pt/MgAl (gray)[42] (with permission from RSC Publications)

    图  9  催化剂的制备工艺示意图和SEM图像[50]

    Figure  9  Schematic diagram of catalyst preparation process and SEM diagram (a) NiSn@C-5/1-500, (b) NiSn@C-1/2-500, (c) NiSn@C-1/5-500, (d) NiSn@C-1/2-300, (e) NiSn@C-1/2-600, (f) NiSn@C-1/2-800[50] (with permission from Elsevier Publications)

    图  10  Ni20Sn1@NC催化剂的催化性能[51]

    Figure  10  Ni20Sn1@NC catalytic performance of catalysts[51] (with permission from ACS Publications)

    图  11  催化剂制备示意图和表征分析[52]

    Figure  11  Schematic diagram and characterization analysis of catalyst preparation[52] (with permission from ACS Publications)

    图  12  乙醇在Ni和Sn-Ni上解离的结构图以及偶联机制[53]

    Figure  12  Structure diagram and coupling mechanism of ethanol dissociation on Ni and Sn-Ni[53] (with permission from Elsevier Publications)

    图  13  电荷密度分布以及Bader电荷转移[54]

    Figure  13  Charge density distribution and Bader charge transfer[54] (with permission from Elsevier Publications)

    图  14  不同碳化温度下的XRD谱图以及演化示意图[55]

    Figure  14  XRD patterns and evolution diagrams at different carbonization temperatures[55] (with permission from Elsevier Publications)

    图  15  (a)乙醇生成正丁醇的直接机理; (b)间接机理示意图; (c)主要机理; (d)和(e)次要机理

    Figure  15  (a) Direct mechanism of ethanol producing n-butanol; (b) Schematic diagram of indirect mechanism; (c) Main mechanism; (d) and (e) Secondary mechanisms

    表  1  金属氧化物催化剂

    Table  1  Metal oxide catalysts

    CatalystReaction conditionsConv./%Sel./%Reference
    MgO450 ℃, 0.5 g catalyst, N2 10 mL/min, 7 h56.132.7[15]
    MgO400 ℃, 0.2 g catalyst, 6% ethanol, 1.3 atm23.034.0[16]
    Mg-ZrO2400 ℃52.035.0[17]
    Mg-Al(Mg/Al=3)350 ℃, 0.3 g catalyst, 12% ethanol,
    atmospheric pressure, 12 h
    35.040.0[18]
    Cu1MgAl3O200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    2.543.0[20]
    Cu5MgAl3O200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    4.140.0[20]
    Cu10MgAl3O200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    4.528.0[20]
    Cu20MgAl3O200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    3.818.0[20]
    Pd5MgAlO200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    3.872.7[20]
    Ag5MgAlO200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    1.638.8[20]
    Mn5MgAlO200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    0.753.3[20]
    Fe5MgAlO200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    0.339.2[20]
    Sm5MgAlO200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    1.366.3[20]
    Yb5MgAlO200 ℃, 0.5 g catalyst, 39.5 g ethanol,
    autogenic pressure, 5 h
    1.253.0[20]
    CuMgAlOx260 ℃, 0.1 MPa, GHSV=750 mL/(g·h),
    LHSV=2 mL/(g·h)
    43.948.0[21]
    CuMgAlOx350 ℃, 0.15 g catalyst, 5 h79.632.0[22]
    Co0.15Mg2.85AlOx250 ℃, 0.1 MPa, 0.2 g catalyst, WHSV=0.96 h−132.995.4[23]
    OM-Cu4La2.6Al100260 ℃, 3 MPa (N2), LHSV=2 mL/(h·g), 12 h52.272.2[24]
    Conv.: conversion of ethanol; Sel.: selectivity of higher alcohol.
    下载: 导出CSV

    表  2  羟基磷灰石(HAP)催化剂

    Table  2  Hydroxyapatite (HAP) catalyst

    CatalystReaction conditionsConv./%Sel./%Reference
    HAP Ca/P=1.64320 ℃, 0.21 g catalyst, GHSV=10000 h−122.762.4[26]
    HAP (Ca+Sr)/P=1.67400 ℃, flow=50 mL/min,
    GHSV=5000 mL/(g·h), 4 h
    13.076.4[27]
    Ca-HAP-1(1.59)400 ℃, atmospheric pressure, GHSV=10000 h−116.222.2[28]
    Ca-HAP-2(1.62)400 ℃, atmospheric pressure, GHSV=10000 h−120.850.4[28]
    Ca-HAP-3(1.65)400 ℃, atmospheric pressure, GHSV=10000 h−121.262.4[28]
    Ca-HAP-4(1.67)400 ℃, atmospheric pressure, GHSV=10000 h−115.856.2[28]
    Sr-HAP-1(1.58)300 ℃, atmospheric pressure, W/Fethanol=130 (h·g)/mol1.169.0[28]
    Sr-HAP-2(1.64)300 ℃, atmospheric pressure, W/Fethanol=130 (h·g)/mol5.978.1[28]
    Sr-HAP-3(1.67)300 ℃, atmospheric pressure, W/Fethanol=130 (h·g)/mol7.981.7[28]
    Sr-HAP-4(1.70)300 ℃, atmospheric pressure, W/Fethanol=130 (h·g)/mol11.386.4[28]
    Cu-HAP250 ℃, 0.1 g catalyst,
    H2 or N2 30 mL/min, 0.5 h
    36.686.7[29]
    Ni-HAP400 ℃, 0.25 g catalyst, 0.5 mL ethanol, 0.1 MPa N2, 24 h55.667.7[30]
    Conv.: conversion of ethanol; Sel.: selectivity of higher alcohol.
    下载: 导出CSV

    表  3  单金属负载催化剂

    Table  3  Monometal Supported Catalysts

    CatalystReaction conditionsConv./%Sel./%Reference
    5%Ru/Al2O3300 ℃, 0.01−0.05 g catalyst, 1.2 g ethanol, autogenic pressure, 3 h12.09.0[34]
    5%Rh/Al2O3300 ℃, 0.01−0.05 g catalyst, 1.2 g ethanol, autogenic pressure, 3 h5.035.0[34]
    5%Pd/Al2O3300 ℃, 0.01−0.05 g catalyst, 1.2 g ethanol, autogenic pressure, 3 h9.021.0[34]
    5%Pt/Al2O3300 ℃, 0.01−0.05 g catalyst, 1.2 g ethanol, autogenic pressure, 3 h3.037.0[34]
    0.8%Au/Al2O3300 ℃, 0.01−0.05 g catalyst, 1.2 g ethanol, autogenic pressure, 3 h6.035.0[34]
    6%Ag/Al2O3300 ℃, 0.01−0.05 g catalyst, 1.2 g ethanol, autogenic pressure, 3 h2.020.0[34]
    Ag/Mg-Al250 ℃53.713.8[35]
    Ni/γ-Al2O3230 ℃, WHSV=1.42 h−1, 100 bar, 10 h41.047.5[36]
    Ni/γ-Al2O3240 ℃, 2 g catalyst, 70 bar, LHSV=0.1 h−1, 10 h14.069.0[37]
    Cu/γ-Al2O3240 ℃, 2 g catalyst, 70 bar, LHSV=0.1 h−1, 10 h14.064.0[37]
    Cu/CeO2260 ℃, 1 mL/min CO2 and 0.05 mL/min EtOH, LHSV=1.97 h−139.035.0[38]
    Ru/MgO400 ℃43.09.0[39]
    Au/mTiO2250 ℃74.010.0[40]
    Co/MgAlO350 ℃55.033.0[41]
    Cu/MgAl230 ℃, 0.5 or 2 g catalyst, 200 mL ethanol, 30 bar N2, 8 h81.9[42]
    Ru/Mg3Al1-LDO350 ℃, 0.5 g catalyst, p(N2)=0.1 MPa, WHSV=3.2 h−129.682.6[43]
    Ni@C0.5 g catalyst, 5 MPa H2 initial pressure, 10 h61.785.7[44]
    Conv.: conversion of ethanol; Sel.: selectivity of higher alcohol.
    下载: 导出CSV

    表  4  多金属负载催化剂

    Table  4  Multimetal supported catalysts

    CatalystReaction conditionsConv./%Sel./%Reference
    Cu-CeO2/AC250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)39.155.2[45]
    5Cu1Ce/AC250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)46.261.8[45]
    4Cu1Ce/AC250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)45.662.7[45]
    3Cu1Ce/AC250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)46.260.0[45]
    2Cu1Ce/AC250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)46.358.7[45]
    1Cu1Ce/AC250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)44.045.5[45]
    3Cu1Ce/SiO2250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)23.312.3[45]
    3Cu1Ce/A2O3250 ℃, 1.0 g catalyst, 2 MPa (N2), LHSV=4 mL/(h·g)46.917.4[45]
    Ni-Cu/HT310 ℃, Ni:Cu=1:162.434.8[46]
    Ni/La2O3/Al2O3230 ℃, 30 g catalyst,
    reactor pressure=100 bar
    41.074.0[47]
    Ni/Cu/La2O3/β-Al2O3230 ℃, 30 g catalyst, WHSV=2.06 h−115.078.0[48]
    NiSn/MgAlO250 ℃, 1 g NaOH, 10 g H2O, 10 g ethanol, 12 h66.993.8[49]
    NiSn@C250 ℃, 0.5 g catalyst, EtOH/H2O=1, 24 h47.036.0[50]
    NiSn@NC250 ℃, 0.5 g catalyst, 15 g ethanol,
    15 g H2O, 1 g NaOH, 24 h
    68.531.8[51]
    NiZn@NC250 ℃, 0.5 g catalyst, 15 g ethanol,
    15 g H2O, 1 g NaOH, 24 h
    75.2[52]
    Sn-Ni/CS230 ℃, 0.3 g catalysts, 0.87 g NaOH,
    10 g EtOH, 10 g H2O, 12 h
    60.085.0[53]
    NiMo@C240 ℃, 0.6 g catalyst, 13.5 g C2H5OH,
    1.5 g fusel, 15.0 g H2O, 0.9 g NaOH, 12 h
    89.444.7[54]
    NiSn@C-MgO250 ℃, 0.5 g catalyst, 10 g ethanol,
    10 g H2O, 0.5 g NaOH, 12 h
    73.360.9[55]
    Cu-La2O3/Al2O3250 ℃, 1.0 g catalyst, 3 MPa (N2), LHSV=2 mL/(g·h)56.776.1[9]
    Conv.: conversion of ethanol; Sel.: selectivity of higher alcohol.
    下载: 导出CSV
  • [1] KLINGER J L, WESTOVER T L, EMERSON R M, et al. Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities[J]. Appl Energy,2018,228:535−545. doi: 10.1016/j.apenergy.2018.06.107
    [2] SARKODIE SA, STREZOV V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries[J]. Sci Total Environ,2019,646:862−871. doi: 10.1016/j.scitotenv.2018.07.365
    [3] SHEN F, XIONG X, FU J, et al. Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources[J]. Renewable Sustainable Energy Rev,2020,130:109944. doi: 10.1016/j.rser.2020.109944
    [4] CALIGIURI C, RENZI M, BIETRESATO M, et al. Experimental investigation on the effects of bioethanol addition in diesel-biodiesel blends on emissions and performances of a micro-cogeneration system[J]. Energy Convers Manag,2019,185:55−65. doi: 10.1016/j.enconman.2019.01.097
    [5] HOSSEINZADEH-BANDBAFHA H, TABATABAEI M, AGHBASHLO M, et al. A comprehensive review on the environmental impacts of diesel/biodiesel additives[J]. Energy Convers Manag,2018,174:579−614. doi: 10.1016/j.enconman.2018.08.050
    [6] MACHADO C F R, ARAÚJO O Q F, DE MEDEIROS J L, et al. Carbon dioxide and ethanol from sugarcane biorefinery as renewable feedstocks to environment-oriented integrated chemical plants[J]. J Cleaner Prod,2018,172:1232−1242. doi: 10.1016/j.jclepro.2017.10.234
    [7] NASSAR H N, EL-AZAB W I M, EL-GENDY N S. Sustainable ecofriendly recruitment of bioethanol fermentation lignocellulosic spent waste biomass for the safe reuse and discharge of petroleum production produced water via biosorption and solid biofuel production[J]. J Hazard Mater,2022,422:126845. doi: 10.1016/j.jhazmat.2021.126845
    [8] MOORE C M, STAPLES O, JENKINS R W, et al. Acetaldehyde as an ethanol derived bio-building block: An alternative to Guerbet chemistry[J]. Green Chem,2017,19(1):169−174.
    [9] HE J, LI X, KOU J, et al. Catalytic upgrading of ethanol to higher alcohols over nickel-modified Cu-La2O3/Al2O3 catalysts[J]. Catal Sci Technol,2023,13(1):170−177. doi: 10.1039/D2CY01554D
    [10] DAMODHARAN D, SATHIYAGNANAM A P, RANA D, et al. Effective utilization of waste plastic oil in a direct injection diesel engine using high carbon alcohols as oxygenated additives for cleaner emissions[J]. Energy Convers Manag,2018,166:81−97. doi: 10.1016/j.enconman.2018.04.006
    [11] EAGAN N M, KUMBHALKAR M D, BUCHANAN J S, et al. Chemistries and processes for the conversion of ethanol into middle-distillate fuels[J]. Nat Rev Chem,2019,3(4):223−249. doi: 10.1038/s41570-019-0084-4
    [12] CAO Y, ZHANG C, TSANG D C W, et al. Hydrothermal liquefaction of lignin to aromatic chemicals: Impact of lignin structure[J]. Ind Eng Chem Res,2020,59(39):16957−16969. doi: 10.1021/acs.iecr.0c01617
    [13] CAO Y, HE M, DUTTA S, et al. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics[J]. Renewable Sustainable Energy Rev,2021,152:111722. doi: 10.1016/j.rser.2021.111722
    [14] MALIK K, SHARMA P, YANG Y, et al. Lignocellulosic biomass for bioethanol: Insight into the advanced pretreatment and fermentation approaches[J]. Ind Crops Prod,2022,188:115569. doi: 10.1016/j.indcrop.2022.115569
    [15] NDOU A S, PLINT N, COVILLE N J. Dimerisation of ethanol to butanol over solid-base catalysts[J]. Appl Catal A: Gen,2003,251(2):337−345. doi: 10.1016/S0926-860X(03)00363-6
    [16] BIRKY T W, KOZLOWSKI J T, DAVIS R J. Isotopic transient analysis of the ethanol coupling reaction over magnesia[J]. J Catal,2013,298:130−137. doi: 10.1016/j.jcat.2012.11.014
    [17] KOZLOWSKI J T, DAVIS R J. Heterogeneous catalysts for the Guerbet coupling of alcohols[J]. ACS Catal,2013,3(7):1588−1600. doi: 10.1021/cs400292f
    [18] CARVALHO D L, DE AVILLEZ R R, RODRIGUES M T, et al. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol[J]. Appl Catal A: Gen,2012,415−416:96−100. doi: 10.1016/j.apcata.2011.12.009
    [19] CARVALHO D L, BORGES L E P, APPEL L G, et al. In situ infrared spectroscopic study of the reaction pathway of the direct synthesis of n-butanol from ethanol over MgAl mixed-oxide catalysts[J]. Catal Today,2013,213(18):115−121.
    [20] MARCU I C, TICHIT D, FAJULA F, et al. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts[J]. Catal Today,2009,147(3/4):231−238. doi: 10.1016/j.cattod.2009.04.004
    [21] 程福龙, 郭荷芹, 崔静磊, 等. CuMgAlOx复合氧化物催化甲醇乙醇Guerbet反应: Mg2+/Al3+比的影响[J]. 燃料化学学报,2018,46(12):1472−1481. doi: 10.1016/S1872-5813(18)30061-6

    CHENG Fulong, GUO Heqin, CUI Jinglei, et al. Guerbet reaction of methanol and ethanol catalyzed by CuMgAlOx mixed oxides: Effect of M2+/Al3+ ratio[J]. J Fuel Chem Technol,2018,46(12):1472−1481. doi: 10.1016/S1872-5813(18)30061-6
    [22] SIQUEIRA M R, PERRONE O M, METZKER G, et al. Highly selective 1-butanol obtained from ethanol catalyzed by mixed metal oxides: Reaction optimization and catalyst structure behavior[J]. Mol Catal,2019,476:110516. doi: 10.1016/j.mcat.2019.110516
    [23] LV W L, HE L, LI W C, et al. Atomically dispersed Co2+ on MgAlOx boosting C4–10 alcohols selectivity of ethanol valorization[J]. Green Chem,2023,25(7):2653−2662. doi: 10.1039/D3GC00078H
    [24] ZHAO H, SHEN X, HE J, et al. Catalytic upgrading of ethanol to higher alcohols over ordered mesoporous Cu-La-Al composite metal oxides[J]. Appl Surf Sci,2022,599:153851. doi: 10.1016/j.apsusc.2022.153851
    [25] YERGAZIYEVA G Y, DOSSUMOV K, MAMBETOVA M M, et al. Effect of Ni, La, and Ce oxides on a Cu/Al2O3 catalyst with low copper loading for ethanol non-oxidative dehydrogenation[J]. Chem Eng Technol,2021,44(10):1890−1899. doi: 10.1002/ceat.202100112
    [26] OGO S, ONDA A, IWASA Y, et al. 1-butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. J Catal,2012,296:24−30. doi: 10.1016/j.jcat.2012.08.019
    [27] TSUCHIDA T, YOSHIOKA T, SAKUMA S, et al. Synthesis of biogasoline from ethanol over hydroxyapatite catalyst[J]. Ind Eng Chem Res,2015,47(5):1443−1452.
    [28] SILVESTER L, LAMONIER J F, LAMONIER C, et al. Guerbet reaction over strontium-substituted hydroxyapatite catalysts prepared with various (Ca+Sr)/P ratios[J]. ChemCatChem,2017,9(12):2250−2261. doi: 10.1002/cctc.201601480
    [29] ZHOU B C, LI W C, LV W L, et al. Enhancing ethanol coupling to produce higher alcohols by tuning H2 partial pressure over a copper-hydroxyapatite catalyst[J]. ACS Catal,2022,12(19):12045−12054. doi: 10.1021/acscatal.2c03327
    [30] XUE M, YANG B, XIA C, et al. Upgrading ethanol to higher alcohols via biomass-derived Ni/bio-apatite[J]. ACS Sustainable Chem Eng,2022,10(11):3466−3476. doi: 10.1021/acssuschemeng.1c07189
    [31] WANG Q N, SHI L, LU A H. Highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde[J]. ChemCatChem,2015,7(18):2846−2852. doi: 10.1002/cctc.201500501
    [32] ZAFFRAN J, MICHEL C, DELBECQ F, et al. Trade-off between accuracy and universality in linear energy relations for alcohol dehydrogenation on transition metals[J]. J Phys Chem C,2015,119(23):12988−12998. doi: 10.1021/acs.jpcc.5b01703
    [33] ZHANG J, SHI K, AN Z, et al. Acid-base promoted dehydrogenation coupling of ethanol on supported Ag particles[J]. Ind Eng Chem Res,2020,59(8):3342−3350. doi: 10.1021/acs.iecr.9b06778
    [34] RIITTONEN T, TOUKONIITTY E, MADNANI D K, et al. One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide-the effect of the active metal on the selectivity[J]. Catalysts,2012,2(4):68−84.
    [35] KOZLOWSKI J T, DAVIS R J. Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol[J]. J Energy Chem,2013,22(1):58−64. doi: 10.1016/S2095-4956(13)60007-8
    [36] JORDISON T L, LIRA C T, MILLER D J. Condensed-phase ethanol conversion to higher alcohols[J]. Ind Eng Chem Res,2015,54(44):10991−11000. doi: 10.1021/acs.iecr.5b02409
    [37] RIITTONEN T, ERANEN K, MAKIARVELA P, et al. Continuous liquid-phase valorization of bio-ethanol towards bio-butanol over metal modified alumina[J]. Renewable Energy,2015,74:369−378. doi: 10.1016/j.renene.2014.08.052
    [38] EARLEY J H, BOURNE R A, WATSON M J, et al. Continuous catalytic upgrading of ethanol to n-butanol and >C4 products over Cu/CeO2 catalysts in supercritical CO2[J]. Green Chem,2015,17:3018−3025. doi: 10.1039/C4GC00219A
    [39] CIMINO S, LISI L, ROMANUCCI S, et al. Catalysts for conversion of ethanol to butanol: Effect of acid-base and redox properties[J]. Catal Today,2017,304:58−63.
    [40] QUESADA J, ARREOLA- SÁNCHEZ R, FABA L, et al. Effect of Au nanoparticles on the activity of TiO2 for ethanol upgrading reactions[J]. Appl Catal A: Gen,2018,551(5):23−33.
    [41] QUESADA J, FABA L, DÍAZ, EVA, et al. Tuning the selectivities of Mg-Al mixed oxides for ethanol upgrading reactions through the presence of transition metals[J]. Appl Catal A: Gen,2018,559(5):167−174.
    [42] FABA L, CUETO J, PORTILLO M Á, et al. Effect of catalyst surface chemistry and metal promotion on the liquid-phase ethanol condensation to higher alcohols[J]. Appl Catal A: Gen,2022,643:118783. doi: 10.1016/j.apcata.2022.118783
    [43] YUAN B, ZHANG J, AN Z, et al. Atomic Ru catalysis for ethanol coupling to C4+ alcohols[J]. Appl Catal B: Environ,2022,309:121271. doi: 10.1016/j.apcatb.2022.121271
    [44] ZHONG Q, LIAO J, ZHONG Q, et al. Aqueous upgrading of ethanol to higher alcohol diesel blending and jet fuel precursors over Na-doped porous Ni@C nanocomposite[J]. Fuel,2022,324:124507.
    [45] JIANG D, WU X, MAO J, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. ChemComm,2016,52(95):13749−13752.
    [46] ZACCHERIA F, SCOTTI N, RAVASIO N. The role of copper in the upgrading of bioalcohols[J]. ChemCatChem,2018,10(7):1526−1535. doi: 10.1002/cctc.201701844
    [47] NEZAM I, PEEREBOOM L, MILLER D J. Continuous condensed-phase ethanol conversion to higher alcohols: Experimental results and techno-economic analysis[J]. J Cleaner Prod,2019,209:1365−1375. doi: 10.1016/j.jclepro.2018.10.276
    [48] NEZAM I, ZAK J, MILLER D J. Condensed-phase ethanol conversion to higher alcohols over bimetallic catalysts[J]. Ind Eng Chem Res,2020,59(31):13906−13915.
    [49] WU X, CAI X, ZHANG Q, et al. Upgrading of aqueous bioethanol to higher alcohols over NiSn/MgAlO catalyst[J]. ACS Sustainable Chem Eng,2021,9(33):11269−11279.
    [50] LIU W, CHEN B, ZHANG Q, et al. One-pot synthesis of high-carbon bio-alcohols from aqueous ethanol upgrading over water-tolerance NiSn@ C catalyst[J]. Energy Convers Manag,2021,249:114822.
    [51] FEI X, XU Q, XUE L, et al. Aqueous phase catalytic conversion of ethanol to higher alcohols over NiSn bimetallic catalysts encapsulated in nitrogen-doped biorefinery lignin-based carbon[J]. Ind Eng Chem Res,2021,60(49):17959−17969.
    [52] LIN X, FEI X, CHEN D, et al. Efficient catalytic upgrading of ethanol to higher alcohols via inhibiting C–C cleavage and promoting C–C coupling over biomass-derived NiZn@ NC catalysts[J]. ACS Catal,2022,12(19):11573−11585.
    [53] CHEN B, ZHENG X, GU J, et al. Engineering Sn Sn doping Ni/chitosan to boost higher alcohols synthesis from direct coupling of aqueous ethanol: Modifying adsorption of aldehyde intermediates for C-C bond cleavage suppressing[J]. Appl Catal B: Environ, 2023, 321: 122048.
    [54] LIAO J, LIU Z, LING Y, et al. Electronic and surface engineering of Mo doped Ni@ C nanocomposite boosting catalytic upgrading of aqueous bio-ethanol to bio-jet fuel precursors[J]. Chem Eng J,2023,461:141888. doi: 10.1016/j.cej.2023.141888
    [55] CAI X, LI X, DANG M, et al. Boosting the selectivity of higher alcohols in upgrading of aqueous bioethanol over amphiphilic NiSn@ C-MgO catalyst[J]. Fuel,2023,335:126971.
    [56] YANG C, MENG Z Y. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites[J]. J Catal,1993,142(1):37−44. doi: 10.1006/jcat.1993.1187
    [57] SMITH K J, ANDERSON R B. A chain growth scheme for the higher alcohols synthesis[J]. J Catal,1984,85(2):428−436.
    [58] DI COSIMO J I, APESTEGUYÍA CR, GINÉS M J L, et al. Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts[J]. J Catal,2000,190:261−275. doi: 10.1006/jcat.1999.2734
    [59] SCALBERT J, THIBAULT-STARZYk F, JACQUOT R, et al. Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: How relevant is acetaldehyde self-aldolization?[J]. J Catal,2014,311:28−32. doi: 10.1016/j.jcat.2013.11.004
    [60] CHIEREGATO A, VELASQUEZ OCHOA J, BANDINELLI C, et al. On the chemistry of ethanol on basic oxides: Revising mechanisms and intermediates in the Lebedev and Guerbet reactions[J]. ChemSusChem,2015,8(2):377−388. doi: 10.1002/cssc.201402632
    [61] WU X, FANG G, TONG Y, et al. Catalytic upgrading of ethanol to n‐butanol: Progress in catalyst development[J]. ChemSusChem,2018,11(1):71−85.
    [62] HANSPAL S, YOUNG Z D, PRILLAMAN J T, et al. Influence of surface acid and base sites on the Guerbet coupling of ethanol to butanol over metal phosphate catalysts[J]. J Catal,2017,352:182−190.
    [63] MANOJVEER S, SALAHI S, WENDT O F, et al. Ru-catalyzed cross-dehydrogenative coupling between primary alcohols to guerbet alcohol derivatives: With relevance for fragrance synthesis[J]. J Org Chem,2018,83(18):10864−10870. doi: 10.1021/acs.joc.8b01558
    [64] GABRIËLS D, HERNÁNDEZ W Y, SELS B, et al. Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization[J]. Catal Sci Technol,2015,5(8):3876−3902. doi: 10.1039/C5CY00359H
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  105
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-08-19
  • 录用日期:  2023-08-21
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-04-03

目录

    /

    返回文章
    返回