留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiPt/Ti2O3纳米催化剂的制备及其催化水合肼制氢性能研究

赵荣琦 徐林林 刘通

赵荣琦, 徐林林, 刘通. NiPt/Ti2O3纳米催化剂的制备及其催化水合肼制氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 421-428. doi: 10.19906/j.cnki.JFCT.2023062
引用本文: 赵荣琦, 徐林林, 刘通. NiPt/Ti2O3纳米催化剂的制备及其催化水合肼制氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 421-428. doi: 10.19906/j.cnki.JFCT.2023062
ZHAO Rongqi, XU Linlin, LIU Tong. Preparation of NiPt/Ti2O3 nanocatalyst and its catalytic performance for hydrogen production from hydrazine hydrate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 421-428. doi: 10.19906/j.cnki.JFCT.2023062
Citation: ZHAO Rongqi, XU Linlin, LIU Tong. Preparation of NiPt/Ti2O3 nanocatalyst and its catalytic performance for hydrogen production from hydrazine hydrate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 421-428. doi: 10.19906/j.cnki.JFCT.2023062

NiPt/Ti2O3纳米催化剂的制备及其催化水合肼制氢性能研究

doi: 10.19906/j.cnki.JFCT.2023062
基金项目: 山东省自然科学基金 (ZR2019QEM004)资助
详细信息
    通讯作者:

    Tel: 053284022772, E-mail: 312171566@qq.com (XU L L)

    liutong@qust.edu.cn(LIU T)

  • 中图分类号: O643.36

Preparation of NiPt/Ti2O3 nanocatalyst and its catalytic performance for hydrogen production from hydrazine hydrate

Funds: The project was supported by Shandong Provincial Natural Science Foundation (ZR2019QEM004).
  • 摘要: 本研究利用H2还原制备Ti2O3载体后,通过湿化学浸渍-还原法制备NiPt/Ti2O3纳米催化剂进行催化水合肼研究。研究表明,在催化剂的制备过程中,Ni和Pt之间形成了一种合金,该合金的形成使催化剂的催化活性升高,Ti2O3与NiPt合金的相互作用提升了催化剂催化性能和循环稳定性。Ni5Pt5/Ti2O3催化剂催化水合肼产氢的反应的TOF值为1076.1 h−1
  • FIG. 3021.  FIG. 3021.

    FIG. 3021.  FIG. 3021.

    图  1  Ni0.5Pt0.5/Ti2O3催化剂的SEM图像和锚定NiPt NPS在Ti2O3上的粒径分布

    Figure  1  SEM images of Ni0.5Pt0.5/Ti2O3 catalyst ((a),(b),(c)), and anchored NiPt NPS particle size distribution on Ti2O3 (d)

    图  2  Ni0.5Pt0.5/Ti2O3催化剂各元素的面扫描图像

    Figure  2  The elemental mapping images of Ni0.5Pt0.5/Ti2O3 catalysts for each element

    图  3  Ni0.5Pt0.5/Ti2O3催化剂的TEM图像

    Figure  3  TEM image of Ni0.5Pt0.5/Ti2O3 catalyst

    图  4  Ni0.5Pt0.5/Ti2O3催化剂、未负载金属粒子的Ti2O3催化剂载体和PtNi的XRD图像

    Figure  4  XRD patterns of Ni0.5Pt0.5/Ti2O3 catalyst, Ti2O3 catalyst carrier without loaded metal particles and NiPt

    图  5  Ni0.5Pt0.5/Ti2O3的XPS总谱图(a)、O 1s (b)、Ni 2p (c)和Pt 4f(d)的XPS光电子能谱谱图

    Figure  5  XPS photoelectron spectra of Ni0.5Pt0.5/Ti2O3 spectrum (a), O 1s (b), Pt 4f (c) and Ni 2p (d)

    图  6  不同的Ni/Pt物质的量比率下,NiPt/Ti2O3催化剂催化水合肼脱氢性能图(a);不同的Pt/Ni物质的量比率下,NiPt/Ti2O3所对应的催化剂TOF值图(b)

    Figure  6  Catalytic performance of NiPt/Ti2O3 catalyst for dehydrogenation of hydrazine hydrate under different Ni/Pt molar ratios (a); TOF values of catalysts corresponding to NiPt/Ti2O3 under different Pt/Ni molar ratios (b)

    图  7  (a) Ni0.5Pt0.5/Ti2O3在不同温度下催化水合肼脱氢速率曲线;(b)呈现的是(a)所对应的阿伦尼乌斯曲线

    Figure  7  (a) Ni0.5Pt0.5/Ti2O3 catalytic dehydrogenation rate curves of hydrazine hydrate at different temperatures;(b) Arrhenius curve corresponding to (a)

    图  8  Ni0.5Pt0.5/Ti2O3催化水合肼脱氢循环使用性能

    Figure  8  Ni0.5Pt0.5/Ti2O3 performance in 1st to 5th runs for decomposition of hydrous hydrazine

    表  1  Ni0.5Pt0.5/Ti2O3催化剂的ICP-AES分析

    Table  1  ICP-AES analysis results of Ni0.5Pt0.5/Ti2O3 catalyst

    CatalystNi Pt initial ratioNi Pt finial ratio
    NiPt/Ti2O35∶50.497∶0.502
    下载: 导出CSV

    表  2  不同水合肼脱氢催化剂的催化性能

    Table  2  Catalytic activities of different catalysts for N2H4·H2O decomposition

    CatalystSelectivity for H2 (100%)TOF/h−1Ea/(kJ·mol −1)Temperature/℃
    Ni0.5Pt0.5/Ti2O31001076.147.7650
    Rh55Ni45/Ce(OH)10039538.850
    Rh34Ni66@ZIF-810014058.150
    Pt0.6Ni0.4/PDA-rGO100205633.3950
    (Ni3Pt7)0.5-(MnOx)0.5/NPC-90010070650.1550
    PtNi/CeO210028638.750
    Ni3Pt7/BNG-1000100199.428.430
    Ni0.9Pt0.05Rh0.05/La2O310045.925
    Ni0.58Pt0.42/graphene10043423.930
    Ni0.9Pt0.1/MIL-10110014048.430
    (Ni3Pt7)0.5-(MnOx)0.510012025
    Ni/CeO21003450
    CoPt/La(OH)3100240045.250
    Ni0.8Pt0.2/DT-Ti3C2Tx100122064.350
    Ni-La(OH)3/D-MIL-125100238136.870
    下载: 导出CSV
  • [1] YIN Y, LI B, YUAN Z M, et al. Enhanced hydrogen storage performance of Mg-Cu-Ni system catalyzed by CeO2 additive[J]. J Rare Earths,2020,38(9):983−993. doi: 10.1016/j.jre.2019.07.010
    [2] XU X X, ZHOU Q, YU D H. The future of hydrogen energy: Bio-hydrogen production technology[J]. Int J Hydrogen Energy,2022,47(79):33677−33698. doi: 10.1016/j.ijhydene.2022.07.261
    [3] 邹爱华, 徐晓梅, 周浪, 等. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3

    ZOU Aihua, XU Xiaomei, ZHOU Lang, et al. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for thehydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3
    [4] ZHAO Y, SOTO LEYTAN K N, MCDONELL V, et al. Investigation of visible light emission from hydrogen-air research flames[J]. Int J Hydrogen Energy,2019,44(39):22347−22354. doi: 10.1016/j.ijhydene.2019.06.105
    [5] KARATAIRI E, SARTORI S. Reviving hydrogen as an energy carrier[J]. MRS Bull,2020,45(6):424−426. doi: 10.1557/mrs.2020.157
    [6] YANG K, YANG K K, ZHANG S L, et al. Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nano-particles[J]. J Alloys Compd,2018,732:363−371. doi: 10.1016/j.jallcom.2017.10.241
    [7] 周亮亮. Pt-Ni双金属催化剂的合成与催化水合肼分解制氢性能研究[D]. 广州: 华南理工大学, 2021

    ZHOU Liangliang. Synthesis of Pt-Ni bimetallic catalysts and performance study of catalytic hydrogen production from hydrous hydrazine decomposition[D]. Guang zhou: South China University of Technology, 2021.
    [8] SINGH S K, ZHANG X B, XU Q. Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. J Am Chem Soc,2009,131(29):9894−9895. doi: 10.1021/ja903869y
    [9] 雍辉, 季燕全, 胡季帆,等. Mg-Y-Ni 储氢合金吸放氢动力学性能的研究[J]. 稀有金属,2022,46(8):1021−1030.

    YONG Hui, JI Yanquan, HU Jifan, et al. Absorption and desorption hydrogen kinetic of Mg-Y-Ni based hydrogen storage alloy[J]. Rare Metals,2022,46(8):1021−1030.
    [10] CHENG Y, WU X, XU H. Catalytic decomposition of hydrous hydrazine for hydrogen production[J]. Sustainable Energy Fuels,2019,3(2):343−365. doi: 10.1039/C8SE00538A
    [11] YAO Q, CHEN X, LU Z. Catalytic dehydrogenation of NH3BH3, N2H4, and N2H4BH3 for chemical hydrogen storage[J]. Energy Environ Focus,2014,3(3):236−245. doi: 10.1166/eef.2014.1106
    [12] WAN C, SUN L, XU L X, et. al. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4nanosheets: A highly efficient catalyst for hydrogen generatio-n from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [13] JIANG Y Y, DAI H B, ZHONG Y J, et. al. Complete and rapid conversion of hydrazine monohydrate to hydrogen oversupported Ni-Pt nanoparticles on mesoporous ceria for chemical hydrogen storage[J]. Chem Eur J,2015,21(43):15439−15445. doi: 10.1002/chem.201502421
    [14] WANG J, LI W, WEN Y, et. al. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine[J]. Adv Energy Mater,2015,5(10):1401879. doi: 10.1002/aenm.201401879
    [15] TUNÇ N, RAKAP M. Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis[J]. Renewable Energy,2020,155:1222−1230. doi: 10.1016/j.renene.2020.04.079
    [16] MEN Y N, DU X Q, CHENG G Z, et al. CeOx-modified NiFe nanodendrits grown on rGO for efficient catalytic hydrogen generation from alkaline soluti-on of hydrazine[J]. Int J Hydrogen Energy,2017,42(44):27165−27173. doi: 10.1016/j.ijhydene.2017.08.214
    [17] CHEN J M, ZOU H T, YAO Q L, et al. Cr2O3-modified NiFe nanoparticles as a noble-metal-free catalyst for complete dehydrogenation of hydrazine in a-queous solution[J]. Appl Surf Sci,2020,501:144247. doi: 10.1016/j.apsusc.2019.144247
    [18] HE L, HUANG Y Q, WANG A Q, et al. A noble metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N2H4$H2O decomposi-tion[J]. Angew Chem Int Ed,2012,51:6191−6194. doi: 10.1002/anie.201201737
    [19] HE L, HUANG Y Q, LIU X Y, et al. Structural and catalytic properties of supported Ni-Ir alloy catalysts for H2 generation via hydrous hydrazine decom-position[J]. Appl Cata B: Environ,2014,147:779−788. doi: 10.1016/j.apcatb.2013.10.022
    [20] LIU T, YU J, BIE H, et al. Highly effificient hydrogen generation from hydrous hydrazine using a reduced graphene oxide-supported NiPtP nanoparticle c-atalyst[J]. J Alloys Compd,2017,690:783−790. doi: 10.1016/j.jallcom.2016.08.113
    [21] DAI H, DAI H B, ZHONG Y J, et al. Kinetics of catalytic decomposition of hydrous hydrazine over CeO2-supported bimetallic Ni-Pt nanocatalysts[J]. Int J Hydrogen Energy,2017,42(9):5684−5693. doi: 10.1016/j.ijhydene.2016.10.160
    [22] ZHONG Y J, DAI H B, JIANG Y Y, et al. Highly effificient Ni@Ni-Pt/La2O3 catalyst for hydrogen generation from hydrous hydrazine decomposition: Effect of Ni-Pt surface alloying[J]. J Power Sources,2015,300:294−300. doi: 10.1016/j.jpowsour.2015.09.071
    [23] DAI H, ZHONG Y, WANG P. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst[J]. Prog Nat Sci Mater,2017,27(1):121−125.
    [24] WU D, WEN M, GU C, et al. 2D NiFe/CeO2 basic-site-enhanced catalyst via in-situ topotactic reduction for selectively catalyzing the H2 generation from N2H4·H2O[J]. ACS Appl Mater,2017,9:16103−16108. doi: 10.1021/acsami.7b00652
    [25] QIU Y P, YIN H, DAI H, et al. Tuning the surface composition of Ni/meso-CeO2 with iridium as an effificient catalyst for hydrogen generation from hydr-ous hydrazine[J]. Chem Eur J,2018,24:4902−4908. doi: 10.1002/chem.201705923
    [26] LANG C, JIA Y, YAO X, et al. Recent advances in liquid-phase chemical hydrogen storage[J]. Energy Storage Mater,2020,26:290−312.
    [27] QIU Y, ZHOU L, SHI Q, et al. Free-standing Pt-Ni nanowires catalyst for H2 generation from hydrous hydrazine[J]. Chem Commun,2021,57(5):623−626.
    [28] 石张平, 祁晓岚, 李旭光, 等. La2O3助剂对Rh/SiO2催化CO加氢反应性能的影响[J]. 燃料化学学报,2020,48(4):483−489.

    SHI Zhangping, QI Xiaolan, LI Xuguang, et al. Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation[J]. J Fuel Chem Technol,2020,48(4):483−489.
    [29] WU D, WEN M, LIN X, et al. A NiCo/NiO-CoOx ultrathin layered catalyst with strong basic sites for high-performance H2 generation from hydrous hydr-azine[J]. J Mater Chem A,2016,4(17):6595−6602. doi: 10.1039/C6TA01092J
    [30] WANG Q, GUAN S Y, LI B. 2D graphitic-C3N4 hybridized with 1D flux-grown Na-modified K2Ti6O13 nanobelts for enhanced simulated sunlight and vi-sible-light photocatalytic performance[J]. Catal Sci Technol, 7(18): 4064–4078.
    [31] QING S, QIU Y P, DAI H, et al. Study of formation mechanism of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine[J]. Catal Sci Technol,2019,787:1187−1194.
    [32] LU R, HU M, XU C L, et al. Hydrogen evolution from hydrolysis of ammonia boranecatalyzed by Rh/g-C3N4 under mild conditions[J]. Int J Hydrogen Energy,2018,43(14):7038−7045. doi: 10.1016/j.ijhydene.2018.02.148
    [33] ALSAWAT M, ALTALHI T, SANTOS A, et al. Facile and controllable route for nitrogen doping of carbon nanotubes composite membranes by catalyst-free chemical vapour deposition[J]. Carbon,2016,106:295−305. doi: 10.1016/j.carbon.2016.05.043
    [34] MAJEED A, NOORI F M, ZEESHAN A, et al. Analysis of activation energy in magnetohydrodynamic flow with chemical reaction and second or-der momentum slip model[J]. Case Stud Therm Eng,2018,12:765−773. doi: 10.1016/j.csite.2018.10.007
    [35] LAHNEMAN D J, KIM H, JIANG H, et al. Electronic and optical properties of strain-locked metallic Ti2O3 films[J]. Curr Appl Phys, 2023, 47: 9−14.
    [36] DU X, DU C, CAI P, et al. NiPt nanocata-lysts supported on boron and nitrogen Co-doped graphene for superior hydrazine dehydrogenation and methanol oxidation[J]. ChemCatChem,2016,8(7):1410. doi: 10.1002/cctc.201501405
    [37] WANG C, WANG H L, GAO D W, et al. Amorphous NiCoPt/Ce2O3 nanoparticles as highly efficient catalyst for hydrogen generation from hydrous hyd-razine[J]. Mater Sci Forum,2017,898:1862. doi: 10.4028/www.scientific.net/MSF.898.1862
    [38] CHEN J M, LU Z H, HUANG W, et al. Galvanic replacement synthesis of NiPt/graphene as highly efficient catalysts for hydrogen release from hydrazin-e and hydrazine borane[J]. J Alloys Compd,2017,695:3036−3043. doi: 10.1016/j.jallcom.2016.11.351
    [39] SONG F Z, YANG X C, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: Remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods,2020,4(1):1900707. doi: 10.1002/smtd.201900707
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  66
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-08-04
  • 录用日期:  2023-08-12
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回