留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiW/SAPO-11催化剂对煤焦油加氢尾油模型化合物二十烷加氢异构性能的影响

赵旭红 吴玉起 代正华 钟梅 靳立军 刘洋 亚力昆江·吐尔逊 李建 周玉生

赵旭红, 吴玉起, 代正华, 钟梅, 靳立军, 刘洋, 亚力昆江·吐尔逊, 李建, 周玉生. NiW/SAPO-11催化剂对煤焦油加氢尾油模型化合物二十烷加氢异构性能的影响[J]. 燃料化学学报(中英文), 2024, 52(3): 395-404. doi: 10.19906/j.cnki.JFCT.2023068
引用本文: 赵旭红, 吴玉起, 代正华, 钟梅, 靳立军, 刘洋, 亚力昆江·吐尔逊, 李建, 周玉生. NiW/SAPO-11催化剂对煤焦油加氢尾油模型化合物二十烷加氢异构性能的影响[J]. 燃料化学学报(中英文), 2024, 52(3): 395-404. doi: 10.19906/j.cnki.JFCT.2023068
ZHAO Xuhong, WU Yuqi, DAI Zhenghua, ZHONG Mei, JIN Lijun, LIU Yang, Yalkunjang Tursun, LI Jian, ZHOU Yusheng. Effect of NiW/SAPO-11 catalyst on hydroisomerization performance of model compound eicosane for tail oil hydrogenation of coal tar[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 395-404. doi: 10.19906/j.cnki.JFCT.2023068
Citation: ZHAO Xuhong, WU Yuqi, DAI Zhenghua, ZHONG Mei, JIN Lijun, LIU Yang, Yalkunjang Tursun, LI Jian, ZHOU Yusheng. Effect of NiW/SAPO-11 catalyst on hydroisomerization performance of model compound eicosane for tail oil hydrogenation of coal tar[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 395-404. doi: 10.19906/j.cnki.JFCT.2023068

NiW/SAPO-11催化剂对煤焦油加氢尾油模型化合物二十烷加氢异构性能的影响

doi: 10.19906/j.cnki.JFCT.2023068
基金项目: 新疆维吾尔自治区重大科技专项(2021A01002-3),国家自然科学基金(22169019,22279110)和“天池英才”引进计划资助
详细信息
    通讯作者:

    Tel: 13669931725, E-mail: zhongmei0504@126.com

    liu_yang0517@126.com

  • 中图分类号: TQ426

Effect of NiW/SAPO-11 catalyst on hydroisomerization performance of model compound eicosane for tail oil hydrogenation of coal tar

Funds: The project was supported by the Major Science and Technology Project of Xinjiang Uygur Autonomous Region (2021A01002-3), the National Natural Science Foundation of China (22169019, 22279110) and “Tianchi Talents” Introduction Plan.
  • 摘要: 以SAPO-11分子筛为载体,采用机械化学法制备Ni系催化剂,引入W调节其电子结构、晶粒尺寸与形态分布以及催化剂的孔结构、酸性与酸量等,基于对XRD、TEM、BET、NH3-TPD、吡啶吸附红外等结果的深入分析,探究催化剂NiW配比对催化剂性质和煤焦油加氢尾油模型化合物正二十烷(n-C20)加氢异构性能的影响规律。结果表明,Ni/SAPO-11负载W后,比表面积不同程度增加,W质量分数为0.5%时比表面积达到最大值149 m2/g;Ni的平均粒径减小,W质量分数为1%时降至最小值4.43 nm,比Ni/SAPO-11减小36%,且Ni0的含量和表面酸量均最高。此外,W促进了Ni的还原,使得还原峰温向低温方向移动。XPS分析表明,随着W含量的增加,Ni0的结合能降低,W5+的结合能升高。二十烷(n-C20)的加氢异构产物分布显示,3Ni1W/SAPO-11作用下n-C20的转化率和异二十烷(i-C20)的收率均最高,分别为88.23%和75.72%,且以单支链异二十烷(Mono-i-C20)为主,收率达71.65%。在线取样结果显示,n-C20在金属位点与酸功能的双重作用下先生成单支链异构体,随着反应的进行向多支链异构体转化,不稳定的多支链异构体会进一步裂解成小分子烷烃。
  • FIG. 3018.  FIG. 3018.

    FIG. 3018.  FIG. 3018.

    图  1  催化剂的XRD谱图(a)和局部放大图(b)

    Figure  1  XRD patterns (a) and local magnification (b) of catalyst

    图  2  催化剂的N2吸附-脱附曲线(a)和孔径分布(b)

    Figure  2  N2 adsorption-desorption curves (a) and pore size distributions (b) of catalysts

    图  3  催化剂的TEM(a1)−(e1)和HRTEM(a2)−(e2)图与Ni的粒径分布(a3)−(e3)

    Figure  3  The TEM (a1)−(e1) and HRTEM (a2)−(e2) images of catalysts and size distribution of Ni (a3)−(e3)

    图  4  3Ni1W/SAPO-11中Ni 2p (a)和W 4f (b)的分峰拟合图

    Figure  4  Peak fitting profiles of Ni 2p (a) and W 4f (b) in 3Ni1W/SAPO-11

    图  5  Ni和W组分的结合能(a)与形态分布(b)

    Figure  5  Binding energy (a) and morphology distribution (b) of Ni and W species

    图  6  催化剂的H2-TPR曲线

    Figure  6  H2-TPR profiles for different catalysts

    图  7  催化剂的NH3-TPD曲线(a)和Py-FTIR谱图(b)

    Figure  7  NH3-TPD profiles (a) and Py-FTIR spectra (b) of catalysts

    图  8  催化剂对n-C20加氢异构反应性能的影响

    Figure  8  Effect of catalyst on hydrogenation isomerization of n-C20

    图  9  n-C20加氢异构行为随时间的变化

    Figure  9  Hydro-isomerism behavior of n-C20 with varied reaction time

    图  10  n-C20在3Ni1W/SAPO-11上主要的加氢异构反应路径

    Figure  10  The main hydro-isomerization reaction pathway of n-C20 on 3Ni1W/SAPO-11

    表  1  催化剂的孔结构参数和相对结晶度

    Table  1  Pore structure parameters and relative crystallinity of catalysts

    SampleSBETa/(m2·g−1)Smicb/(m2·g−1)Sextc/(m2·g−1)d/nmv/(cm3·g−1)Cd/%
    SAPO-11184131536.520.30100
    4Ni/SAPO-1111158538.320.2384.93
    3.5Ni0.5W/SAPO-11149109403.490.1385.80
    3Ni1W/SAPO-1112375484.910.1588.39
    2.5Ni1.5W/SAPO-1111367465.170.1586.83
    4W/SAPO-1113477577.760.2689.28
    a: BET method; b: t-plot method; c: Sext was calculated by subtracting micropore area from BET area; d: The relative crystallinity derived from XRD analysis using the ratio of the sum of zeolite peaks to background with the parent SAPO-11 as reference.
    下载: 导出CSV

    表  2  催化剂的酸性分布

    Table  2  Acid site distribution of catalysts

    SampleWeak acidity/(mmol·g−1)Medium strong acidity/(mmol·g−1)Total/(mmol·g−1)
    SAPO-110.330.550.88
    4Ni/SAPO-110.190.380.57
    3.5Ni0.5W/SAPO-110.280.410.69
    3Ni1W/SAPO-110.300.450.75
    2.5Ni1.5W/SAPO-110.290.400.69
    4W/SAPO-110.250.360.61
    下载: 导出CSV

    表  3  催化剂的理化性质

    Table  3  Physicochemical properties of the catalysts

    SampleAcidity/(μmol·g−1)dNi/nmDNia/%CNib/(μmol·g−1)CNi/CB
    CBCL
    SAPO-1147.28139.03
    4Ni/SAPO-1114.0258.036.9613.9595.086.78
    3.5Ni0.5W/SAPO-1130.8935.235.7816.80100.173.24
    3Ni1W/SAPO-1135.3039.374.4321.92112.033.17
    2.5Ni1.5W/SAPO-1134.2542.434.8520.0293.362.72
    4W/SAPO-1141.34125.81
    a: Ni dispersion (dispersion (%)=97.1/dNi); b: Calculated from the metal content and metal dispersity of Ni.
    下载: 导出CSV

    表  4  不同催化剂在类似反应条件下的催化性能

    Table  4  The catalytic performance of different catalysts under similar reaction conditions

    CarrierMetalLoading/%ReactantTemperature
    /℃
    Pressure
    /MPa
    Conversion
    /%
    Yield
    /%
    Ref.
    SAPO-11NiGa6n-C16360296.7664.90[27]
    ZSM-22Pt0.5n-C163204>80.00>71.00[51]
    ZSM-48Ptn-C163204<87.9<80[49]
    SAPO-11NiW20n-C16340279.571.18[9]
    SAPO-11NiCu4.5n-C8340270.0066.50[21]
    SAPO-11NiW4n-C20320388.2375.72this work
    下载: 导出CSV
  • [1] NIU M, SONG Z, PAN L, et al. Combined process of hydrocracking and hydrofining of coal tar[J]. Energy Fuels,2020,34(11):13614−13624. doi: 10.1021/acs.energyfuels.0c02096
    [2] BAI Z, HUANG P, WANG L, et al. A study on upgrading light coal tar to aerospace fuel[J]. J Fuel Chem Technol,2021,49(5):694−702. doi: 10.1016/S1872-5813(21)60062-2
    [3] ZHU Y, LI G, YANG T, et al. Tracing the composition and structure evolution of oxygen-enriched asphaltenes during the hydrotreating of middle-low temperature coal tar[J]. J Anal Appl Pyrolysis,2022,168:105780. doi: 10.1016/j.jaap.2022.105780
    [4] 郑舒丹, 安良成. 加氢裂化尾油异构脱蜡催化剂的研究进展[J]. 合成材料老化与应用,2022,51(2):114−116. doi: 10.16584/j.cnki.issn1671-5381.2022.02.048

    ZHENG Shudan, AN Liangcheng. Research progress of isomerization dewaxing catalysts for hydrocracking tail oil[J]. Synth Mater Aging Appl,2022,51(2):114−116. doi: 10.16584/j.cnki.issn1671-5381.2022.02.048
    [5] ZHANG M, ZANG X. Application of principal-component analysis to the interpretation of coal tar physico-chemical properties[J]. Fuel,2023,338:127304. doi: 10.1016/j.fuel.2022.127304
    [6] 许海龙, 徐岩峰, 张翠侦, 等. 加氢裂化尾油异构脱蜡-补充精制产品探索研究[J]. 现代化工,2021,41(5):208−211, 216.

    XU Hailong, XU Yanfeng, ZHANG Cuizhen, et al. Study on hydrocracking tail oil isomerization dewaxing and supplementary refined products[J]. Mod Chem Ind,2021,41(5):208−211, 216.
    [7] PRAJAPATI R, KOHLI K, MAITY S K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: an experimental review[J]. Fuel,2020,288:119686.
    [8] YU G, QIU M, WANG T, et al. Optimization of the pore structure and acidity of SAPO-11 for highly efficient hydroisomerization on the long-chain alkane[J]. Microporous Mesoporous Mater,2021,320:111076. doi: 10.1016/j.micromeso.2021.111076
    [9] DAI X, CHENG Y, SI M, et al. Synthesis of nickel in situ modified SAPO-11 molecular sieves and hydroisomerization performance of their NiWS supported catalysts[J]. Front Chem,2021,9:765573. doi: 10.3389/fchem.2021.765573
    [10] GE L, YU G, CHEN X, et al. Effects of particle size on bifunctional Pt/SAPO-11 catalysts in the hydroisomerization of n-dodecane[J]. New J Chem,2020,44(7):2996−3003. doi: 10.1039/C9NJ06215G
    [11] 宋成业. ZSM-22/ZSM-23共晶分子筛的合成及加氢异构性能[D]. 大连: 大连理工大学, 2021.

    SONG Chengye. Synthesis and hydroisomerization of ZSM-22/ZSM-23 eutectic zeolite[D]. Dalian: Dalian University of Technology, 2021.
    [12] 白迪, 孟记朋, 邹驰, 等. 引入Al2O3对Pt/ZSM-23催化剂加氢异构性能的调控[J]. 燃料化学学报(中英文),2023,51(2):175−185. doi: 10.1016/S1872-5813(22)60034-3

    BAI Di, MENG Jipeng, ZOU Chi, et al. Regulation of hydrogenation isomerism of Pt/ZSM-23 catalyst by introducing Al2O3[J]. J Fuel Chem Technol,2023,51(2):175−185. doi: 10.1016/S1872-5813(22)60034-3
    [13] ZHAO W, LIU L, NIU X, et al. Reaction pathways control of long-chain alkanes hydroisomerization and hydrocracking via tailoring the metal-acid sites intimacy[J]. Fuel,2023,349:128703. doi: 10.1016/j.fuel.2023.128703
    [14] CHENG K, SMULDERS L C, VAN DER WAL L I, et al. Maximizing noble metal utilization in solid catalysts by control of nanoparticle location[J]. Science,2022,377(6602):204−208. doi: 10.1126/science.abn8289
    [15] KAZAKOV M O, SMIRNOVA M Y, DUBININ M E, et al. Combining USY and ZSM-23 in Pt/zeolite hydrocracking catalyst to produce diesel and lube base oil with improved cold flow properties[J]. Fuel,2023,344:128085. doi: 10.1016/j.fuel.2023.128085
    [16] CRESPO I, PALOS R, TRUEBA D, et al. Intensifying gasoline production in the hydrocracking of pre-hydrotreated light cycle oil by means of Pt and Pd supported on a spent FCC catalyst[J]. Fuel,2023,334:126579. doi: 10.1016/j.fuel.2022.126579
    [17] ZHAN W, LYU Y, LIU X, et al. The direct synthesis of Ni/SAPO-11 hydroisomerization catalyst via a novel two-step crystallization strategy[J]. Petrol Sci,2022,19(5):2448−2459. doi: 10.1016/j.petsci.2022.01.014
    [18] ZHANG X, DENG J, LAN T, et al. Coking-and sintering-resistant Ni nanocatalysts confined by active BN edges for methane dry reforming[J]. ACS Appl Mater Inter,2022,14(22):25439−25447. doi: 10.1021/acsami.2c04149
    [19] DAI X, CHENG Y, WEI Q, et al. Small-crystal and hierarchical SAPO-11 molecular sieve synthesized via three-stage crystallization method and hydroisomerization performance of corresponding NiWS supported catalyst[J]. Fuel,2022,324:124610. doi: 10.1016/j.fuel.2022.124610
    [20] CHEN Y, LI C, CHEN X, et al. Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane[J]. Microporous Mesoporous Mater,2018,268(2018):216−224.
    [21] YANG Z, LIU Y, LIU D, et al. Hydroisomerization of n-octane over bimetallic Ni-Cu/SAPO-11 catalysts[J]. Appl Catal A: Gen,2017,543:274−282. doi: 10.1016/j.apcata.2017.06.028
    [22] XING G, LIU S, GUAN Q, et al. Investigation on hydroisomerization and hydrocracking of C15–C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catal Today,2019,330:109−116. doi: 10.1016/j.cattod.2018.04.028
    [23] 王东旭. Pt与NiMo双金属组分催化剂的限域制备及催化加氢性能研究[D]. 哈尔滨: 黑龙江大学, 2021.

    WANG Dongxu. Limited preparation and catalytic hydrogenation performance of Pt and NiMo bimetallic catalysts[D]. Harbin: Heilongjiang University, 2021.
    [24] 白宜灵. Ni/ZSM-22 分子筛在费托油品加氢异构化反应中的研究[D]. 北京: 中国科学院大学 (中国科学院过程工程研究所), 2019.

    BAI Yiling. Study on the hydroisomerization of Fischer-Tropsch oil by Ni/ZSM-22 molecular sieve[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, CAS), 2019.
    [25] 王斐, 钟梅, 李建, 等. 机械球磨法制备NiMo 催化剂及其在菲加氢中的应用[J]. 燃料化学学报(中英文),2023,51(2):165−174.

    WANG Fei, ZHONG Mei, Li Jian, et al. Preparation of NiMo catalyst by mechanical ball milling and its application in the hydrogenation of phenylene[J]. J Fuel Chem Technol,2023,51(2):165−174.
    [26] 翟建荣, 张艳敏, 莫文龙, 等. 制备方法对煤焦油模型化合物裂解催化剂Ni/Al2O3结构及性能的影响[J]. 燃料化学学报,2018,46(9):1063−1073.

    ZHAI Jianrong, ZHANG Yanmin, MO Wenlong, et al. Effect of preparation method on structure and properties of Ni/Al2O3 catalyst for pyrolysis of coal tar model compound[J]. J Fuel Chem Technol,2018,46(9):1063−1073.
    [27] DAI X, CHENG Y, SI M, et al. A non-noble metal supported catalyst with potential prospect for hydroisomerization of n-hexadecane: second metal incorporated NiMe/SAPO-11 catalyst with superior hydroisomerization performance[J]. Fuel,2022,324:124517. doi: 10.1016/j.fuel.2022.124517
    [28] ZHANG Y, WANG W, JIANG X, et al. Hydroisomerization of n-hexadecane over a Pd-Ni2P/SAPO-31 bifunctional catalyst: synergistic effects of bimetallic active sites[J]. Catal Sci Technol,2018,8(3):817−828. doi: 10.1039/C7CY02106B
    [29] LIU X, KONG L, LIU C, et al. Study on the formation process of MoO3/Fe2(MoO4)3 by mechanochemical synthesis and their catalytic performance in methanol to formaldehyde[J]. J Therm Anal Calorim,2020,142(4):1363−1376. doi: 10.1007/s10973-020-09483-4
    [30] 叶梓良. C9石油树脂加氢双金属催化剂的研究[D]. 北京: 北京化工大学, 2022.

    YE Ziliang. Study on bimetallic catalyst for hydrogenation of C9 petroleum resin[D]. Beijing: Beijing University of Chemical Technology, 2022.
    [31] WEN C, XU J, WANG X, et al. n-Heptane hydroisomerization over a SO4 2–/ZrO2@ SAPO-11 composite-based catalyst derived from the growth of UiO-66 on SAPO-11[J]. Energy Fuels,2020,34(8):9498−9508. doi: 10.1021/acs.energyfuels.0c01634
    [32] LIU S, REN J, ZHANG H, et al. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite[J]. J Catal,2016,335:11−23. doi: 10.1016/j.jcat.2015.12.009
    [33] WANG D, ZHU Y, TIAN C, et al. Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt-Mo2N/SBA-15[J]. Catal Sci Technol,2016,6(7):2403−2412. doi: 10.1039/C5CY01654A
    [34] KWON D W, PARK K H, HONG S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chem Eng J,2016,284:315−324. doi: 10.1016/j.cej.2015.08.152
    [35] WANG Y, LI X, ZHANG M, et al. Highly active and durable single-atom tungsten-doped NiS0.5Se0.5 nanosheet @ NiS0.5Se0.5 nanorod heterostructures for water splitting[J]. Adv Mater,2022,34(13):2107053. doi: 10.1002/adma.202107053
    [36] YANG L, XING S, SUN H, et al. Citric-acid-induced mesoporous SAPO-11 loaded with highly dispersed nickel for enhanced hydroisomerization of oleic acid to iso-alkanes[J]. Fuel Process Technol,2019,187:52−62. doi: 10.1016/j.fuproc.2019.01.008
    [37] YANG F, LIBRETTO N J, KOMARNENI M R, et al. Enhancement of m-cresol hydrodeoxygenation selectivity on Ni catalysts by surface decoration of MoOx species[J]. ACS Catal,2019,9(9):7791−7800. doi: 10.1021/acscatal.9b01285
    [38] GARCÍA-PÉREZ D, ALVAREZ-GALVAN M C, CAMPOS-MARTIN J M, et al. Influence of the reduction temperature and the nature of the support on the performance of zirconia and alumina-supported Pt catalysts for n-dodecane hydroisomerization[J]. Catalysts,2021,11(1):88. doi: 10.3390/catal11010088
    [39] GUZMAN-BUCIO D M, GOMEZ-SOSA G, CABERA-GERMAN D, et al. Detailed peak fitting analysis of the Ni 2p photoemission spectrum for metallic nickel and an initial oxidation[J]. J Electron Spectrosc,2023,262:147284.
    [40] KOU T, CHEN M, WU F, et al. Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction[J]. Nat Commun,2020,11(1):1−10. doi: 10.1038/s41467-019-13993-7
    [41] BEHLING R, VALANGE S, CHATEL G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? what limitations? What trends?[J]. Green Chem,2016,18(7):1839−1854. doi: 10.1039/C5GC03061G
    [42] YU J, LIANG J, CHEN X, et al. Synergistic effect of Ni/W/Cu on MgAl2O4 for one-pot hydrogenolysis of cellulose to ethylene glycol at a low H2 pressure[J]. ACS Omega,2021,6(17):11650−11659. doi: 10.1021/acsomega.1c00979
    [43] YAN H, XIE Y, WU A, et al. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting[J]. Adv Mater,2019,31(23):1901174. doi: 10.1002/adma.201901174
    [44] GAO R, PAN L, WANG H, et al. Ultradispersed nickel phosphide on phosphorus-doped carbon with tailored d-band center for efficient and chemoselective hydrogenation of nitroarenes[J]. ACS Catal,2018,8(9):8420−8429. doi: 10.1021/acscatal.8b02091
    [45] LYU Y, YU Z, YANG Y, et al. Metal-acid balance in the in-situ solid synthesized Ni/SAPO-11 catalyst for n-hexane hydroisomerization[J]. Fuel,2019,243:398−405. doi: 10.1016/j.fuel.2019.01.013
    [46] WANG D, KANG X, GU Y, et al. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts[J]. ACS Cataly,2020,10(18):10449−10458. doi: 10.1021/acscatal.0c01159
    [47] PEYROVI M, PARSAFARD N, HAJIABADI M A. Ni-W catalysts supported on HZSM-5/HMS for the hydrogenation reaction of aromatic compounds: effect of Ni/W ratio on activity, stability and kinetics[J]. Int J Chem Kinet,2017,49(4):283−292. doi: 10.1002/kin.21074
    [48] GARCÍA-PÉREZ D, BLANCO-BRIEVA G, ALVAREZ-GALVAN M C, et al. Influence of W loading, support type, and preparation method on the performance of zirconia or alumina-supported Pt catalysts for n-dodecane hydroisomerization[J]. Fuel,2022,319:123704. doi: 10.1016/j.fuel.2022.123704
    [49] MENG J, BAI D, ZEYAODONG P, et al. Hydroisomerization of n-hexadecane over Pt/ZSM-48 catalysts: effects of metal-acid balance and crystal morphology[J]. Microporous Mesoporous Mater,2022,330:111637. doi: 10.1016/j.micromeso.2021.111637
    [50] LIU L, ZHANG M, WANG L, et al. Modulating acid site distribution in MTT channels for controllable hydroisomerization of long-chain n-alkanes[J]. Fuel Process Technol,2023,241:107605. doi: 10.1016/j.fuproc.2022.107605
    [51] WANG Y, TAO Z, WU B, et al. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. J Catal,2015,322:1−13.
    [52] CAI Q, GONG T, YU T, et al. Comparison of hydrocracking and cracking of pyrolytic lignin over different Ni-based catalysts for light aromatics production[J]. Fuel Process Technol,2023,240:107564. doi: 10.1016/j.fuproc.2022.107564
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  71
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-08-26
  • 录用日期:  2023-08-28
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回