留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属氧化物负载钌催化木质素衍生酚类化合物制备环己醇的研究

张文豪 童乐 冯君锋 潘晖

张文豪, 童乐, 冯君锋, 潘晖. 金属氧化物负载钌催化木质素衍生酚类化合物制备环己醇的研究[J]. 燃料化学学报(中英文), 2024, 52(3): 343-352. doi: 10.19906/j.cnki.JFCT.2023071
引用本文: 张文豪, 童乐, 冯君锋, 潘晖. 金属氧化物负载钌催化木质素衍生酚类化合物制备环己醇的研究[J]. 燃料化学学报(中英文), 2024, 52(3): 343-352. doi: 10.19906/j.cnki.JFCT.2023071
ZHANG Wenhao, TONG Le, FENG Junfeng, PAN Hui. Study on preparation of cyclohexanol from lignin-derived phenolic compounds catalyzed by metal oxide-loaded ruthenium[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 343-352. doi: 10.19906/j.cnki.JFCT.2023071
Citation: ZHANG Wenhao, TONG Le, FENG Junfeng, PAN Hui. Study on preparation of cyclohexanol from lignin-derived phenolic compounds catalyzed by metal oxide-loaded ruthenium[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 343-352. doi: 10.19906/j.cnki.JFCT.2023071

金属氧化物负载钌催化木质素衍生酚类化合物制备环己醇的研究

doi: 10.19906/j.cnki.JFCT.2023071
基金项目: 国家自然科学基金(32101469)和广西林产化学与工程重点实验室(国家民委重点实验室)开放基金课题(GXFK2204)资助
详细信息
    通讯作者:

    Tel: 13770663924 , E-mail: 2018149@njfu.edu.cn

  • 中图分类号: TQ35;TK6

Study on preparation of cyclohexanol from lignin-derived phenolic compounds catalyzed by metal oxide-loaded ruthenium

Funds: The project was supported by National Natural Science Foundation of China (32101469),Guangxi Key Laboratory of Forest Products Chemistry and Engineering (State Ethnic Affairs Commission Key Laboratory) Open Fund Project (GXFK2204)
  • 摘要: 本研究采用初湿浸渍法,制备得到一系列钌负载于金属氧化物载体的催化剂(Ru/CeO2、Ru/Nb2O5、Ru/ZrO2、Ru/Al2O3和Ru/CeOx),用于木质素衍生酚类化合物苯酚提质加氢转化为环己醇的研究。通过采用X射线晶体衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)等手段对所制备催化剂进行结构和物化特征的表征,发现Ru/CeOx中含有的氧空位可以很好地吸附带有含氧基团的原料,从而有利于苯酚的高效加氢;同时XPS表明,Ru/CeOx中的有效活性中心RuO2和Ru0是催化加氢的活性位点,因此,氧空位和金属活性位点的共同作用使得催化剂有较好的加氢活性。探究了反应温度、压力、时间对加氢效果的影响,发现催化剂能够在140 ℃下使苯酚完全转化,得到目标产物环己醇得率为90.2%,并对催化剂的循环特性进行考察,发现循环使用四次后催化剂仍表现出优异的加氢活性。同时采用GC-MS检测加氢过程的中间产物,进而推断出苯酚加氢过程的反应路径。
  • FIG. 3013.  FIG. 3013.

    FIG. 3013.  FIG. 3013.

    图  1  (a) 载体CeOx的X射线衍射谱图及(b) 催化剂RuNi/CeOx和Ru/CeOx的X射线衍射谱图

    Figure  1  (a) X-ray diffraction pattern of CeOx support and (b) X-ray diffraction patterns of catalysts RuNi/CeOx and Ru/CeOx

    图  2  CeOx载体和Ru/CeOx催化剂的扫描电镜照片

    Figure  2  SEM of CeOx support and Ru/CeOx catalyst ((a) (10 μm) CeOx, (b) (5 μm) CeOx, (c) (1 μm) CeOx, (d) (10 μm) Ru/CeOx, (e) (5 μm) Ru/CeOx, (f) (1 μm) Ru/CeOx)

    图  3  Ru/CeOx催化剂的HRTEM照片

    Figure  3  HRTEM image of Ru/CeOx catalyst ((a) Ru/CeOx image, (b) Ru particle size distribution diagram, (c) Ru and CeO2 lattice, (d) local enlargement of Ru particles)

    图  4  Ru/CeO2和Ru/CeOx催化剂的XPS谱图

    Figure  4  XPS spectra of Ru/CeO2 catalyst ((a) Ce 3d, (c) Ru 3p, (f) O 1s) and Ru/CeOx catalyst ((b) Ce 3d, (d) Ru 3p, (e) O 1s)

    图  5  催化剂Ru/CeOx和Ru/CeO2的激光拉曼光谱谱图

    Figure  5  Raman spectra of catalysts Ru/CeOx and Ru/CeO2

    图  6  反应时间对催化剂性能的影响

    Figure  6  Effect of reaction time on catalyst performance

    图  7  反应温度对催化剂性能的影响

    Figure  7  Effect of reaction temperature on catalyst performance

    图  8  反应氢气压力对催化剂性能的影响

    Figure  8  Effect of reaction hydrogen pressure on catalyst performance

    图  9  反应后液体产物的GC-MS谱图

    Figure  9  GC-MS spectrum of liquid product after reaction

    图  10  苯酚催化转化的可能反应途径

    Figure  10  Possible reaction pathway of catalytic conversion of phenol

    图  11  Ru/CeOx循环性能

    Figure  11  Ru/CeOx Cyclic experiment

    Reaction conditions: 0.05 g Ru/CeOx, 3 MPa H2, 140 ℃, 3 h.

    图  12  Ru/CeOx催化剂的XPS谱图

    Figure  12  XPS spectra of Ru/CeOx catalyst ((a) not used Ce 3d, (b) used Ce 3d, (c) not used Ru 3p, (d) used Ru 3p)

    表  1  不同催化剂的性能研究

    Table  1  Performance study of different catalysts

    CatalystConversion/%Cyclohexanol yield/%
    Ni/Nb2O531.000.00
    Ni/CeO273.5062.70
    Ru/Nb2O541.7037.50
    Ru/CeO2100.0082.50
    Ru-Ni/CeO290.0080.00
    Ru/ZrO210.000.40
    Ru/Al2O312.500.76
    Ru/CeOx100.0090.20
    Reaction conditions: catalyst 0.05 g, reaction time 3 h, reaction temperature 140 ℃, hydrogen pressure 3 MPa.
    下载: 导出CSV
  • [1] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chem Soc Rev,2018,47(3):852−908. doi: 10.1039/C7CS00566K
    [2] WANG H, PU Y, RAGAUSKAS A, et al. From lignin to valuable products-strategies, challenges, and prospects[J]. Bioresource Technol,2019,271:449−461. doi: 10.1016/j.biortech.2018.09.072
    [3] ZHUOHUA S, BÁLINT F, ALESSANDRA D S, et al. Bright side of lignin depolymerization: Toward new platform chemicals[J]. Chem Rev,2018,118(2):614−678. doi: 10.1021/acs.chemrev.7b00588
    [4] SHING W S, RIYANG S, JIAGUANG Z, et al. Downstream processing of lignin derived feedstock into end products[J]. Chem Soc Rev,2020,49(15):5510−5560. doi: 10.1039/D0CS00134A
    [5] CHANGZHI L, XIAOCHEN Z, AIQIN W, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem Rev,2015,115(21):11559−11624. doi: 10.1021/acs.chemrev.5b00155
    [6] OUEDRAOGO A S, BHOI P R. Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil[J]. J Clean Prod,2020,253(C):119957.
    [7] LI X P, CHEN G Y, LIU C X, et al. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review[J]. Renewable Sustainable Energy Rev,2017,71:296−308. doi: 10.1016/j.rser.2016.12.057
    [8] ZHOU M H, GE F, LI J, et al. Catalytic hydrodeoxygenation of guaiacol to cyclohexanol over bimetallic nimo-mof-derived catalysts[J]. Catalysts,2022,12(4):371. doi: 10.3390/catal12040371
    [9] MO L Y, YU W J, CAI H J, et al. Hydrodeoxygenation of bio-derived phenol to cyclohexane fuel catalyzed by bifunctional mesoporous organic-inorganic hybrids[J]. Front Chem,2018,6:216. doi: 10.3389/fchem.2018.00216
    [10] JAFARIAN S, TAVASOLI A, NIKKHAH H. Catalytic hydrotreating of pyro-oil derived from green microalgae spirulina the ( Arthrospira ) plantensis over NiMo catalysts impregnated over a novel hybrid support[J]. Int J Hydrogen Energy,2019,44(36):19855−19867. doi: 10.1016/j.ijhydene.2019.05.182
    [11] XIANG L, YUAN X, ZHICHENG Z, et al. Progress on upgrading methods of bio-oil: A review[J]. Int J Energy Res,2017,41(13):1798−1816. doi: 10.1002/er.3726
    [12] MINGXING Z, JUN H, SHILIANG W, et al. Hydrodeoxygenation of lignin-derived phenolics over facile prepared bimetallic RuCoNx/NC[J]. Fuel,2022,308:121979. doi: 10.1016/j.fuel.2021.121979
    [13] 曲俊聪, 史成香, 张香文, 等. 用于木质素转化制备生物质燃料多功能催化剂的研究进展[J]. 工程科学学报,2022,44(4):664675−675.

    QU Juncong, SHI Chengxiang, ZHANG Xiangwen, et al. Research progress of multifunctional catalysts for lignin conversion to prepare biomass fuel[J]. J Eng Sci,2022,44(4):664675−675.
    [14] ANNE K, CHRISTIAN S, BÉLA T. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design[J]. Green Chem,2017,19(16):3729−3751. doi: 10.1039/C7GC01393K
    [15] SUDARSANAM P, ZHONG R, VAN DEN BOSCH S, et al. Functionalised heterogeneous catalysts for sustainable biomass valorisation[J]. Chem Soc Rev,2018,47(22):8349−8402. doi: 10.1039/C8CS00410B
    [16] 邱泽刚, 尹婵娟, 李志勤, 等. 酚类加氢脱氧催化剂研究进展[J]. 化工进展,2019,38(8):3658−3669. doi: 10.16085/j.issn.1000-6613.2018-1987

    QIU Zegang, YIN Chanjuan, LI Zhiqin, et al. Research progress of phenolic hydrodeoxygenation catalysts[J]. Chem Eng Prog,2019,38(8):3658−3669. doi: 10.16085/j.issn.1000-6613.2018-1987
    [17] FENG S S, LIU X D, SU Z S, et al. Low temperature catalytic hydrodeoxygenation of lignin-derived phenols to cyclohexanols over the Ru/SBA-15 catalyst[J]. RSC Adv,2022,12(15):9352−9362. doi: 10.1039/D2RA01183B
    [18] JIANG W, CAO J P, YANG Z, et al. Hydrodeoxygenation of lignin and its model compounds to hydrocarbon fuels over a bifunctional Ga-doped HZSM-5 supported metal Ru catalyst[J]. Appl Catal A: Gen,2022,633:118516. doi: 10.1016/j.apcata.2022.118516
    [19] DABROS T M H, STUMMANN M Z, HØJ M, et al. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis[J]. Prog Energy Combust,2018,68:268−309. doi: 10.1016/j.pecs.2018.05.002
    [20] SALAKHUM S, SAENLUANG K, WATTANAKIT C. Stability of monometallic Pt and Ru supported on hierarchical HZSM-5 nanosheets for hydrodeoxygenation of lignin-derived compounds in the aqueous phase[J]. Sustainable Energy Fuels,2020,4(3):1126−1134. doi: 10.1039/C9SE00773C
    [21] ABREU T C, MAGALHAES D S P, CRISOSTOMO R N R, et al. Hydrodeoxygenation of lignin-derived compound mixtures on Pd-supported on various oxides[J]. ACS Sustainable Chem Eng,2021,9(38):12870−12884. doi: 10.1021/acssuschemeng.1c03720
    [22] GRIFFIN M B, FERGUSON G A, RUDDY D A, et al. Role of the support and reaction conditions on the vapor-phase deoxygenation of m-cresol over Pt/C and Pt/TiO2 catalysts[J]. ACS Catal,2016,6(4):2715−2727. doi: 10.1021/acscatal.5b02868
    [23] DE SOUZA P M, RABELO-NETO R C, BORGES L E P, et al. Hydrodeoxygenation of phenol over Pd catalysts. Effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catal,2017,7(3):2058−2073. doi: 10.1021/acscatal.6b02022
    [24] LICHEN L, AVELINO C. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles[J]. Chem Rev,2018,118(10):4981−5079. doi: 10.1021/acs.chemrev.7b00776
    [25] WEI J, JING-PEI C, CHEN Z, et al. Catalytic hydrogenation of aromatic ring over ruthenium nanoparticles supported on α-Al2O3 at room temperature[J]. Appl Catal B: Environ,2022,307:121137. doi: 10.1016/j.apcatb.2022.121137
    [26] JIANG W, CAO J-P, ZHAO X-Y, et al. Highly selective aromatic ring hydrogenation of lignin-derived compounds over macroporous Ru/Nb2O5 with the lost acidity at room temperature[J]. Fuel,2020,282:118869. doi: 10.1016/j.fuel.2020.118869
    [27] WANG X, WANG Z, ZHOU L, et al. Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO2 catalysts: The significance of defect-rich TiOx species[J]. Green Chem,2022,24(15):5822−5834. doi: 10.1039/D2GC01714H
    [28] JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science,2016,353(6295):150−154. doi: 10.1126/science.aaf8800
    [29] NIE L, MEI D, XIONG H, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation[J]. Science,2017,358(6369):1419−1423. doi: 10.1126/science.aao2109
    [30] LIU P, NIU R, LI W, et al. Morphology effect of ceria on the ammonia synthesis activity of Ru/CeO2 catalysts[J]. Catal Lett,2019,149:1007−1016. doi: 10.1007/s10562-019-02674-1
    [31] MUDIYANSELAGE K, AL-SHANKITI I, FOULIS A, et al. Reactions of ethanol over CeO2 and Ru/CeO2 catalysts[J]. Appl Catal B: Environ,2016,197:198−205. doi: 10.1016/j.apcatb.2016.03.065
    [32] JAFFARI G H, IMRAN A, BAH M, et al. Identification and quantification of oxygen vacancies in CeO2 nanocrystals and their role in formation of F-centers[J]. Appl Surf ScI,2017,396:547−553. doi: 10.1016/j.apsusc.2016.10.193
    [33] LU M, JIANG Y, SUN Y, et al. Hydrodeoxygenation of guaiacol catalyzed by ZrO2-CeO2-supported nickel catalysts with high loading[J]. Energy Fuels,2020,34(4):4685−4692. doi: 10.1021/acs.energyfuels.0c00445
    [34] HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Appl Catal B: Environ,2014,158−159:96−105. doi: 10.1016/j.apcatb.2014.01.062
    [35] TAN J, HE J, GAO K, et al. Catalytic hydrogenation of furfural over Cu/CeO2 catalyst: The effect of support morphology and exposed facet[J]. Appl Surf Sci,2022,604:154472. doi: 10.1016/j.apsusc.2022.154472
    [36] HUANG L, TANG F, LIU P, et al. Highly efficient and selective conversion of guaiacol to cyclohexanol over Ni-Fe/MgAlOx: Understanding the synergistic effect between Ni-Fe alloy and basic sites[J]. Fuel,2022,327:125115. doi: 10.1016/j.fuel.2022.125115
    [37] 遇治权. Ni3P基催化剂的制备及苯酚加氢脱氧性能[D]. 大连: 大连理工大学, 2019.

    YU Zhiquan. Preparation of Ni3P-based catalyst and its hydrodeoxygenation performance for phenol[D]. Dalian: Dalian University of Technology, 2019.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  54
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-08-28
  • 录用日期:  2023-09-12
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回