留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层核壳结构Fe@Al-Ti载氧体化学链制氢性能研究

蔡志阳 张俊贤 汪欣 肖慧霞 高云飞 王亦飞

蔡志阳, 张俊贤, 汪欣, 肖慧霞, 高云飞, 王亦飞. 多层核壳结构Fe@Al-Ti载氧体化学链制氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 353-361. doi: 10.19906/j.cnki.JFCT.2023072
引用本文: 蔡志阳, 张俊贤, 汪欣, 肖慧霞, 高云飞, 王亦飞. 多层核壳结构Fe@Al-Ti载氧体化学链制氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 353-361. doi: 10.19906/j.cnki.JFCT.2023072
CAI Zhiyang, ZHANG Junxian, WANG Xin, XIAO Huixia, GAO Yunfei, WANG Yifei. Chemical looping hydrogen generation with multi-layer core-shell oxygen carrier of Fe@Al-Ti[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 353-361. doi: 10.19906/j.cnki.JFCT.2023072
Citation: CAI Zhiyang, ZHANG Junxian, WANG Xin, XIAO Huixia, GAO Yunfei, WANG Yifei. Chemical looping hydrogen generation with multi-layer core-shell oxygen carrier of Fe@Al-Ti[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 353-361. doi: 10.19906/j.cnki.JFCT.2023072

多层核壳结构Fe@Al-Ti载氧体化学链制氢性能研究

doi: 10.19906/j.cnki.JFCT.2023072
详细信息
    通讯作者:

    Tel:021-64252522, E-mail: wangyf@ecust.edu.cn

  • 中图分类号: TQ116.2

Chemical looping hydrogen generation with multi-layer core-shell oxygen carrier of Fe@Al-Ti

  • 摘要: Fe-Al-Ti载氧体在化学链制氢工艺中具有良好的循环稳定性和抗积炭性能,但反应形成FeAl2O4会降低抗烧结性能和氢气产率。为抑制FeAl2O4的生成并进一步提升载氧体反应性能,本研究采用自组装模板燃烧法制备多层核壳结构载氧体,以TiO2为介层阻隔Fe2O3与Al2O3,形成多层核壳Fe@Al-Ti载氧体,在固定床上进行化学链制氢循环,评价多层核壳结构对反应性能的影响。结果表明,Fe@Al-Ti载氧体的介层有效阻隔Fe2O3与Al2O3的接触,抑制了FeAl2O4形成,抗烧结性能得到进一步提升。Fe@Al-Ti载氧体在化学链制氢循环实验中无明显积炭和团聚现象,制氢能力随循环次数逐渐增加,循环稳定性较好;尤其物质的量比Al∶Ti=3.5∶1的核壳载氧体的碳转化率、制氢率和储氧量最高,分别为57.4%、75.0%和6.01 mmol/g,比非核壳Fe-Al-Ti载氧体分别增加28.4%、30.0%、26.9%。
  • FIG. 3014.  FIG. 3014.

    FIG. 3014.  FIG. 3014.

    图  1  Al2O3-TiO2聚合体TEM显微照片

    Figure  1  TEM micrographs of the Al2O3-TiO2 agglomerates

    图  2  化学链制氢固定床装置示意图

    Figure  2  Schematic diagram of fixed bed for chemical looping hydrogen generation

    图  3  不同载氧体20次循环下碳转化率变化

    Figure  3  Carbon conversion rate of different oxygen carriers under 20 cycles

    图  4  不同载氧体20次循环积炭率

    Figure  4  Carbon deposition rate of different oxygen carriers in 20 cycles

    图  5  不同载氧体20次循环下H2产量

    Figure  5  Hydrogen yield of different oxygen carriers under 20 cycles

    图  6  不同载氧体20次循环下储氧量变化

    Figure  6  Oxygen Storage Capacity of different oxygen carriers under 20 cycles

    图  7  不同载氧体单次循环中H2产率随时间变化趋势(第3、10、17次循环)

    Figure  7  H2 yield of different oxygen carriers in a single cycle (Cycle No.3, 10 and 17)

    图  8  载氧体循环前后平均粒径

    Figure  8  The average grain size of oxygen carriers before and after cycles

    图  9  载氧体化学链制氢循环前后SEM照片

    Figure  9  SEM images of oxygen carriers before and after cycles

    图  10  载氧体化学链制氢循环前后XRD谱图

    Figure  10  XRD patterns of oxygen carriers before and after cycles

    表  1  载氧体制备原料及制备方法

    Table  1  Materials and methods of oxygen carriers prepared in this work

    SamplePreparation methodMaterials/g
    Al2O3TiO2Fe(NO3)3·9H2OCO(NH2)2
    SATC(3.5∶1)SATC7.002.0068.1823.25
    SATC(2∶1)SATC6.003.0068.1823.25
    IMImpregnation7.002.0068.18
    Sol-gelSol-gel9.0068.18
    下载: 导出CSV

    表  2  化学链制氢实验循环工况

    Table  2  Experimental procedure in a cycle

    No.Experimental stageTime/minGas flow rate/(L·min−1)
    1CO reduction20CO∶0.30 N2∶1.50
    2nitrogen blowing8N2∶1.50
    3steam oxidization4N2∶1.50 H2O(l)∶0.45
    4nitrogen blowing8N2∶1.50
    5air oxidization10O2∶0.30 N2∶1.50
    6nitrogen blowing8N2∶1.50
    下载: 导出CSV

    表  3  载氧体XRD物相及晶体尺寸

    Table  3  XRD phase and crystallite of oxygen carrier

    Crystal formCrystallite/Å
    freshafter 10 cyclesafter 20 cycles
    SATC(3.5∶1)Fe2TiO5365.5
    FeAl2O4
    SATC(2∶1)Fe2TiO5364.7364.7
    FeAl2O4406.5
    IMFe2TiO5370.0366.6363.8
    FeAl2O4437.4496.5
    下载: 导出CSV
  • [1] JOHN A. Sustainable hydrogen production[J]. Science,2004,305(5686):972−974. doi: 10.1126/science.1103197
    [2] MERIEM M, NAJOUA B, NAUSIKA Q, et al. Toward sustainable hydrogen storage and carbon dioxide capture in post-combustion condition[J]. J Environ Chem Eng,2017,5(2):1628−1637. doi: 10.1016/j.jece.2017.03.003
    [3] MARTINO M, RUOCCO C, MELONI E, et al. Main hydrogen production processes: An overview[J]. Catalysts,2021,11(5):547. doi: 10.3390/catal11050547
    [4] KHAN M, SHAMIM T. Techno-economic assessment of a plant based on a three reactor chemical looping reforming system[J]. Int J Hydrogen Energy,2016,41(48):22677−22688.
    [5] LUIS F, ORTIZ M, GARCIA-LABIANO F, et al. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers[J]. J Power Sourc,2009,192(1):27−34. doi: 10.1016/j.jpowsour.2008.11.038
    [6] PAOLO C, GIOVANNI L, ALBERTO M, et al. Three-reactors chemical looping process for hydrogen production[J]. Int J Hydrogen Energy,2008,33(9):2233−2245. doi: 10.1016/j.ijhydene.2008.02.032
    [7] HSIEH T, XU D, ZHANG Y, et al. 250 kWth high pressure pilot demonstration of the syngas chemical looping system for high purity H2 production with CO2 capture[J]. Appl Energy,2018,230:1660−1672. doi: 10.1016/j.apenergy.2018.09.104
    [8] CHO W C, LEE D Y, SEO M W, et al. Continuous operation characteristics of chemical looping hydrogen production system[J]. Appl Energy,2014,113:1667−1674. doi: 10.1016/j.apenergy.2013.08.078
    [9] LIU T, YU Z, JIAO W, et al. Interaction of coal ashes with potassium-decorated Fe2O3/Al2O3 oxygen carrier in coal-direct chemical looping hydrogen generation (CLHG)[J]. J Energy Inst,2020,93(5):1790−1797. doi: 10.1016/j.joei.2020.03.010
    [10] WANG T, GAO Y, LIU Y, et al. Core-shell Na2WO4/CuMn2O4 oxygen carrier with high oxygen capacity for chemical looping oxidative dehydrogenation of ethane[J]. Fuel,2021,303:121286. doi: 10.1016/j.fuel.2021.121286
    [11] CHEN Y, GALINSKY N, WANG Z, et al. Investigation of perovskite supported composite oxides for chemical looping conversion of syngas[J]. Fuel,2014,134:521−530. doi: 10.1016/j.fuel.2014.06.017
    [12] KHAN M, SHAMIM T. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system[J]. Int J Hydrogen Energy,2017,42(24):15745−15760. doi: 10.1016/j.ijhydene.2017.05.037
    [13] LUO M, YI Y, WANG S Z, WANG Z L, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable Sustainable Energy Rev,2018,81(2):3186−3214.
    [14] GUO Q, CHENG Y, LIU Y, et al. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res.,2014,53:78−86. doi: 10.1021/ie401568x
    [15] WANG J, LI K, WANG H, et al. Sandwich Ni-phyllosilicate@doped-ceria for moderate-temperature chemical looping dry reforming of methane[J]. Fuel Process Technol,2022,232:107268. doi: 10.1016/j.fuproc.2022.107268
    [16] CHEN S, SHI Q, XUE Z, SUN X, et al. Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed[J]. Int J Hydrogen Energy,2011,36(15):8915−8926. doi: 10.1016/j.ijhydene.2011.04.204
    [17] WU H, KU Y, HUANG Y, et al. Fabrication of iron-based oxygen carriers on various supports for chemical looping hydrogen generation[J]. Aerosol Air Qual,2021,21:200322. doi: 10.4209/aaqr.2020.06.0322
    [18] TOMON C, SARAWUTANUKUL S, PHATTHARASUPAKUN N, et al. Core-shell structure of LiMn2O4 cathode material reduces phase transition and Mn dissolution in Li-ion batteries[J]. Commun Chem,2022,5(1):54. doi: 10.1038/s42004-022-00670-y
    [19] HAO J, LIU B, MAENOSONO S, et al. One-pot synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) core-shell nanoparticles as highly efficient catalysts for the reduction of 4-nitrophenol[J]. Scic Rep,2022,12(1):7615. doi: 10.1038/s41598-022-11756-x
    [20] RAMI M, FOROUZANDEHDEL S, SALAMI M, et al. Synthesis of the core/shell structure of polycaprolactone@curcumin-gluten for drug delivery applications[J]. Bio Res Appl Chem,2023,13(1):87.
    [21] XU K, LIU D, FENG L, et al. Mercury removal by Co3O4@TiO2@Fe2O3 magnetic core-shell oxygen carrier in chemical-looping combustion[J]. Fuel,2021,306:121604. doi: 10.1016/j.fuel.2021.121604
    [22] YIN X, WANG S, SUN R, et al. A Ce-Fe oxygen carrier with a core-shell structure for chemical looping steam methane reforming[J]. Ind Eng Chem Res,2020,59(21):9775−9786. doi: 10.1021/acs.iecr.0c00055
    [23] SUN Y, LI J, LI H, et al. Core-shell-like Fe2O3/MgO oxygen carriers matched with fluidized bed reactor for chemical looping reforming[J]. Chem Eng J,2022,431(2):134−143.
    [24] XU Z, ZHAO H, WEI Y, et al. Self-assembly template combustion synthesis of a core-shell CuO@TiO2-Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes[J]. Combust Flame,2015,162(8):3030−3045. doi: 10.1016/j.combustflame.2015.05.006
    [25] LIANG Z, QIN W, DONG C, et al. Experimental and theoretical study of the interactions between Fe2O3/Al2O3 and CO[J]. Energies,2017,10(5):598.
    [26] ZHU M, CHEN S, SOOMRO A, et al. Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation[J]. Appl Energy,2018,225:912−921. doi: 10.1016/j.apenergy.2018.05.082
    [27] POOYA L, ZAINAL A Z, MAEDEH M, et al. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review[J]. Renewable Sustainable Energy Rev,2015,41:615−632. doi: 10.1016/j.rser.2014.08.034
    [28] 马士伟. 基于改性Fe2O3/CeO2载氧体制氢特性研究[D]. 江苏: 东南大学, 2019.

    MA Shiwei. Research on hydrogen production characteristics based on modified Fe2O3/CeO2 oxygen carriers[D]. Jiangsu: Southeast University, 2019.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  46
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-08-05
  • 录用日期:  2023-08-28
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回