留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuCoCe-LDH催化剂的C3H6-SCR脱硝特性

陈佳音 宁淑英 付维 蔡晨 周皞 苏亚欣

陈佳音, 宁淑英, 付维, 蔡晨, 周皞, 苏亚欣. CuCoCe-LDH催化剂的C3H6-SCR脱硝特性[J]. 燃料化学学报(中英文), 2024, 52(3): 373-383. doi: 10.19906/j.cnki.JFCT.2023073
引用本文: 陈佳音, 宁淑英, 付维, 蔡晨, 周皞, 苏亚欣. CuCoCe-LDH催化剂的C3H6-SCR脱硝特性[J]. 燃料化学学报(中英文), 2024, 52(3): 373-383. doi: 10.19906/j.cnki.JFCT.2023073
CHEN Jiayin, NING Shuying, FU Wei, CAI Chen, ZHOU Hao, SU Yaxin. C3H6-SCR denitration characteristics of CuCoCe-LDH catalysts[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 373-383. doi: 10.19906/j.cnki.JFCT.2023073
Citation: CHEN Jiayin, NING Shuying, FU Wei, CAI Chen, ZHOU Hao, SU Yaxin. C3H6-SCR denitration characteristics of CuCoCe-LDH catalysts[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 373-383. doi: 10.19906/j.cnki.JFCT.2023073

CuCoCe-LDH催化剂的C3H6-SCR脱硝特性

doi: 10.19906/j.cnki.JFCT.2023073
基金项目: 国家自然科学基金(52276103))资助
详细信息
    通讯作者:

    E-mail: suyx@dhu.edu.cn

  • 中图分类号: X511

C3H6-SCR denitration characteristics of CuCoCe-LDH catalysts

Funds: The project was supported by the National Natural Science Foundation of China (52276103).
  • 摘要: 采用水热法一步合成一系列的Cu(x)Co(y)Ce(z)-LDH前驱体,煅烧后形成Cu(x)Co(y)Ce(z)O混合金属氧化物催化剂,在固定床微反应器上实验研究了其C3H6选择性催化还原NO的性能(C3H6-SCR)。得益于Cu、Co、Ce之间强大的协同作用,Cu(0.21)Co(0.48)Ce(0.31)O在225 ℃时达到95%的NO转化率和90%的N2选择性。此外,运用ICP、XRD、TEM、XPS、H2-TPR等表征来研究其物理化学性质和催化还原能力之间的关系。XRD结果表明,Cu、Co、Ce之间形成了固溶体,促进了活性金属的分散。XPS和H2-TPR进一步证明Cu和Co之间发生了氧化还原反应,促进氧空位的形成,从而提升其催化还原性能。
  • FIG. 3016.  FIG. 3016.

    FIG. 3016.  FIG. 3016.

    图  1  C3H6-SCR实验装置流程示意图

    Figure  1  Flow chart of the C3H6-SCR experimental setup

    图  2  不同催化剂的NO转化率(a)、N2选择性(b)和Cu(0.21)Co(0.48)Ce(0.31)O的稳定性测试(c)

    Figure  2  NO conversion (a) and N2 selectivity (b) of different catalysts, and stability test of Cu(0.21)Co(0.48)Ce(0.31)O (c)

    Reaction conditions: 0.05%NO, 0.1%C3H6, 5%O2, N2 as balance, flow rate=200 mL/min, GHSV=30000 h−1.

    图  3  SO2对Cu(x)Co(y)Ce(z)O催化活性的影响(a)及FT-IR谱图(b)

    Figure  3  Influence of SO2 on Cu(x)Co(y)Ce(z)O catalysts (a) and FT-IR spectra of Cu(x)Co(y)Ce(z)O (b)

    Reaction conditions: 0.05%NO, 0.1%C3H6, 5%O2, 0.02%SO2, N2 as balance, flow rate=200 mL/min, GHSV=30000 h−1.

    图  4  Cu(x)Co(y)Ce(z)-LDH前驱体和Cu(x)Co(y)Ce(z)O催化剂的XRD谱图

    Figure  4  XRD patterns of Cu(x)Co(y)Ce(z)-LDH precursor and Cu(x)Co(y)Ce(z)O catalysts

    图  5  Cu(0.21)Co(0.48)Ce(0.31)-LDH前驱体的TEM图

    Figure  5  TEM images (a)−(c) of Cu(0.21)Co(0.48)Ce(0.31)-LDH precursor

    图  6  Cu(0.21)Co(0.48)Ce(0.31)O 催化剂的TEM (a)−(b)、EDS mapping (c)−(f)和HRTEM图 (g)−(h)

    Figure  6  TEM images (a)−(b), EDS mapping (c)−(f) result of Cu, Co and Ce, and HRTEM images (g)−(h) of Cu(0.21)Co(0.48)Ce(0.31)O catalyst

    图  7  Cu(x)Co(y)Ce(z)O催化剂的Cu 2p (a)、Co 2p (b)、Ce 3d (c)和O 1s (d) XPS能谱谱图

    Figure  7  XPS energy spectra of Cu 2p (a), Co 2p (b), Ce 3d (c) and O 1s (d) of Cu(x)Co(y)Ce(z)O

    图  8  Cu(0.21)Co(0.48)Ce(0.31)O催化剂反应前后的Cu 2p (a)、Co 2p (b)、Ce 3d (c)和O 1s (d) XPS能谱谱图

    Figure  8  XPS energy spectra of Cu 2p (a), Co 2p (b), Ce 3d (c) and O 1s (d) before and after the reaction of Cu(0.21)Co(0.48)Ce(0.31)O catalysts

    图  9  Cu(x)Co(y)Ce(z)O的N2吸附-脱附等温线和孔径分布

    Figure  9  N2 adsorption-desorption isotherms and pore diameter distribution of Cu(x)Co(y)Ce(z)O

    图  10  Cu(x)Co(y)Ce(z)O催化剂的H2-TPR谱图

    Figure  10  H2-TPR Profiles of Cu(x)Co(y)Ce(z)O catalyst

    图  11  Cu(x)Co(y)Ce(z)O催化剂的C3H6-SCR反应机理图

    Figure  11  The reaction mechanism of C3H6-SCR over Cu(x)Co(y)Ce(z)O catalyst

    表  1  Cu(x)Co(y)Ce(z)O催化剂的表面原子比

    Table  1  Atomic concentration on Cu(x)Co(y)Ce(z)O catalyst surface

    CatalystBinding energy/eVSurface atomic ratio/%
    Cu+Cu2+Co2+Co3+Cu+/Cu2+Co2+/Co3+Ce4+/Ce3+Oβ/Oα
    Cu(0.64)Ce(0.36)O932.4934.30.453.340.72
    952.3954.3
    Cu(0.21)Co(0.48)Ce(0.31)O931.6933.9795.8794.40.550.464.900.81
    951.3953.6781.3779.6
    Co(0.70)Ce(0.30)O794.9793.60.772.550.73
    780.7778.8
    下载: 导出CSV

    表  2  Cu(0.21)Co(0.48)Ce(0.31)O催化剂表面原子比

    Table  2  Atomic concentration on Cu(x)Co(y)Ce(z)O catalyst surface

    Cu(0.21)Co(0.48)Ce(0.31)OSurface atomic ratio/%
    Cu+/Cu2+Co2+/Co3+Ce4+/Ce3+Oβ/Oα
    Before0.550.464.900.81
    After0.470.474.270.65
    下载: 导出CSV

    表  3  Cu(x)Co(y)Ce(z)O催化剂的比表面积、孔容、孔径及ICP数据

    Table  3  Specific surface area, pore volume, pore size and ICP data of Cu(x)Co(y)Ce(z)O catalyst

    CatalystABET/
    (m2·g−1)
    vP/
    (cm3·g−1)
    dP/
    nm
    Element content/(mg·g−1)Molar ratio
    CuCoCexyz
    Cu(0.64)Ce(0.36)O800.0606.566287.32353.540.640.36
    Cu(0.31)Co(0.36)Ce(0.33)O590.17010.328141.93151.94330.500.310.360.33
    Cu(0.21)Co(0.48)Ce(0.31)O530.12511.670100.75212.29325.330.210.480.31
    Co(0.70)Ce(0.30)O290.12314.853329.03329.010.700.30
    下载: 导出CSV
  • [1] BONINGARI T, SMIRNIOTIS P G. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement[J]. Curr Opin Chem Eng,2016,13:133−141. doi: 10.1016/j.coche.2016.09.004
    [2] SHAN W, GENG Y, CHEN X, et al. A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Sci Technol,2016,6(4):1195−200. doi: 10.1039/C5CY01282A
    [3] ZHANG X, SU Y, CHENG J, et al. Effect of Ag on deNOx performance of SCR-C3H6 over Fe/Al-PILC catalysts[J]. J Fuel Chem Technol,2019,47(11):1368−1378. doi: 10.1016/S1872-5813(19)30055-6
    [4] XU J, WANG H, GUO F, et al. Recent advances in supported molecular sieve catalysts with wide temperature range for selective catalytic reduction of NOx with C3H6[J]. RSC Adv,2019,9(2):824−838. doi: 10.1039/C8RA08635D
    [5] 周皞, 苏亚欣, 邓文义等. 金属氧化物类催化剂上HC-SCR研究进展[J]. 环境科学与技术,2016,39(1):93−100.

    ZHOU Hao, SU Yaxin, DENG Wenyi, et al. A review of HC-SCR over metal oxides-based catalysts[J]. Environ Sci Technol,2016,39(1):93−100.
    [6] 宁淑英, 苏亚欣, 杨洪海等. 用于HC-SCR还原NOx的Cu基分子筛催化剂研究进展[J]. 化工进展,2023,42(3):1308−1320.

    NING Shuying, SU Yaxin, YANG Honghai, et al. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NOx with hydrocarbons[J]. Chem Ind Eng Prog,2023,42(3):1308−1320.
    [7] KASHIF M, YUAN M, SU Y, et al. A review on pillared clay-based catalysts for low-temperature selective catalytic reduction of NO with hydrocarbons[J]. Appl Clay Sci,2023,233:106847. doi: 10.1016/j.clay.2023.106847
    [8] HUANG F, HU W, CHEN J, et al. Insight into enhancement of NO reduction with methane by multifunctional catalysis over a mixture of Ce/HZSM-5 and CoOx in excess of oxygen[J]. Ind Eng Chem Res,2018,57(40):13312−13317. doi: 10.1021/acs.iecr.8b00773
    [9] SERHAN N, TSOLAKIS A, WAHBI A, et al. Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3)[J]. Appl Catal B: Environ,2019,241:471−482. doi: 10.1016/j.apcatb.2018.09.068
    [10] YUAN D, LI X, ZHAO Q, et al. A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions[J]. J Catal,2014,309:268−279. doi: 10.1016/j.jcat.2013.09.010
    [11] YAN Q, HOU X, LIU G, et al. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NOx with NH3[J]. J Hazard Mater,2020,400:123260. doi: 10.1016/j.jhazmat.2020.123260
    [12] LIU X, FAN X, HUANG H, et al. Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides[J]. J Colloid Interface Sci,2021,587:385−392. doi: 10.1016/j.jcis.2020.12.023
    [13] WU X, LIU J, LIU X, et al. Fabrication of carbon doped Cu-based oxides as superior NH3-SCR catalysts via employing sodium dodecyl sulfonate intercalating CuMgAl-LDH[J]. J Catal,2022,407:265−280. doi: 10.1016/j.jcat.2022.02.004
    [14] DU Y, LIU L, FENG Y, et al. Enhancement of NH3-SCR performance of LDH-based MMnAl (M=Cu, Ni, Co) oxide catalyst: influence of dopant M[J]. RSC Adv,2019,9(68):39699−39708. doi: 10.1039/C9RA08391J
    [15] CHEN S, YAN Q, ZHANG C, et al. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR[J]. Catal Today,2019,327:81−89. doi: 10.1016/j.cattod.2018.06.006
    [16] YUAN D, LI X, ZHAO Q. Preparation and characterization of Ni-Ti-O mixed oxide for selective catalytic reduction of NO under lean-burn conditions[J]. Chin J Catal,2013,34(7):1449−1455. doi: 10.1016/S1872-2067(12)60614-7
    [17] TRET’YAKOV V F, ZAKIROVA A G, SPOZHAKINA A A, et al. Selective reduction of nitrogen oxides by hydrocarbons on hydrotalcite Co and Ni catalysts[J]. Catal Ind,2010,2(1):62−66. doi: 10.1134/S2070050410010101
    [18] WEN N, SU Y, DENG W, et al. Synergy of CuNiFe-LDH based catalysts for enhancing low-temperature SCR-C3H6 performance: Surface properties and reaction mechanism[J]. Chem Eng J,2022,438:135570. doi: 10.1016/j.cej.2022.135570
    [19] ADAMOWSKA M, KRZTOŃ A, NAJBAR M, et al. DRIFT study of the interaction of NO and O2 with the surface of Ce0.62Zr0.38O2 as deNOx catalyst[J]. Catal Today,2008,137(2/4):288−291. doi: 10.1016/j.cattod.2008.01.013
    [20] ZHAO L, ZHANG Y, BI S, et al. Metal-organic framework-derived CeO2-ZnO catalysts for C3H6-SCR of NO: An in situ DRIFTS study[J]. RSC Adv,2019,9(33):19236−19242. doi: 10.1039/C9RA03103K
    [21] LI X, LU G, QU Z, et al. The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene[J]. Appl Catal A: Gen,2011,398(1/2):82−87. doi: 10.1016/j.apcata.2011.03.020
    [22] AMIN N A S, TAN E F, MANAN Z A. Selective reduction of NOx with C3H6 over Cu and Cr promoted CeO2 catalysts[J]. Appl Catal B: Environ,2003,43(1):57−69. doi: 10.1016/S0926-3373(02)00275-8
    [23] WEN N, SU Y, DENG W, et al. Selective catalytic reduction of NO with C3H6 over CuFe-containing catalysts derived from layered double hydroxides[J]. Fuel,2021,283:119296. doi: 10.1016/j.fuel.2020.119296
    [24] WANG X, WEN W, MI J, et al. The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature[J]. Appl Catal B: Environ,2015,176:454−463.
    [25] PAN K, YU F, LIU Z, et al. Enhanced low-temperature CO-SCR denitration performance and mechanism of two-dimensional CuCoAl layered double oxide[J]. J Environ Chem Eng,2022,10(3):108030. doi: 10.1016/j.jece.2022.108030
    [26] ZHANG X P, CUI Y Z, TAN B J, et al. The adsorption and catalytic oxidation of the element mercury over cobalt modified Ce–ZrO2 catalyst[J]. RSC Adv,2016,6(91):88332−88339. doi: 10.1039/C6RA19450H
    [27] WANG Z, LAN J, HANEDA M, et al. Selective catalytic reduction of NOx with NH3 over a novel Co-Ce-Ti catalyst[J]. Catal Today,2021,376:222−228. doi: 10.1016/j.cattod.2020.05.040
    [28] LI Z, CHEN J, JIANG M, Et al. Study on SO2 poisoning mechanism of CO catalytic oxidation reaction on copper-cerium catalyst[J]. Catal Lett,2021,152:2729−2737.
    [29] SHI M, YE S, QU H, et al. Synergistic effect of Cu2+ doping and sulfation in Cu-Ce-S, tolerance to H2O and SO2 and decomposition behaviors of ammonia salts[J]. Mol Catal,2018,459:135−140. doi: 10.1016/j.mcat.2018.08.023
    [30] YAN Q, CHEN S, QIU L, et al. The synthesis of CuyMnzAl1-zOx mixed oxide as a low-temperature NH3-SCR catalyst with enhanced catalytic performance[J]. Dalton Trans,2018,47(9):2992−3004. doi: 10.1039/C7DT02000G
    [31] ZHANG Y, ZHAO L, KANG M, et al. Insights into high CO-SCR performance of CuCoAlO catalysts derived from LDH/MOFs composites and study of H2O/SO2 and alkali metal resistance[J]. Chem Eng J,2021,426:131873. doi: 10.1016/j.cej.2021.131873
    [32] WANG L, YANG Z, LIAO Y, et al. Synthesis of reusable and anti-fouling Co-Al-Ce LDHs coated stainless steel mesh for ultrafast oil/water separation and photocatalytic degradation[J]. Appl Clay Sci,2023,232:106769. doi: 10.1016/j.clay.2022.106769
    [33] DING J, HAN Y, HONG G. Tailoring the activity of NiFe layered double hydroxide with CeCO3OH as highly efficient water oxidation electrocatalyst[J]. Int J Hydrogen Energy,2021,46(2):2018−2025. doi: 10.1016/j.ijhydene.2020.10.075
    [34] JING F, LIU S, WANG R, et al. Hydrogen production through glycerol steam reforming over the NiCexAl catalysts[J]. Renewable Energy,2020,158:192−201. doi: 10.1016/j.renene.2020.05.044
    [35] ZHANG Q, XU R, LIU N, et al. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low-temperature performance for CO2 methanation[J]. Appl Surf Sci,2022,579:152204. doi: 10.1016/j.apsusc.2021.152204
    [36] HE C, YU Y, YUE L, et al. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol[J]. Appl Catal B: Environ,2014,147:156−166. doi: 10.1016/j.apcatb.2013.08.039
    [37] YAN Q, GAO Y, LI Y, et al. Promotional effect of Ce doping in Cu4Al1Ox – LDO catalyst for low-T practical NH3-SCR: Steady-state and transient kinetics studies[J]. Appl Catal B: Environ,2019,255:117749. doi: 10.1016/j.apcatb.2019.117749
    [38] YAO X, KANG K, CAO J, et al. Enhancing the denitration performance and anti-K poisoning ability of CeO2-TiO2/P25 catalyst by H2SO4 pretreatment: Structure-activity relationship and mechanism study[J]. Appl Catal B: Environ,2020,269:118808. doi: 10.1016/j.apcatb.2020.118808
    [39] LI D, LIU X, ZHANG Q, et al. Cobalt and copper composite oxides as efficient catalysts for preferential oxidation of CO in H2-rich stream[J]. Catal Lett,2008,127(3/4):377−385.
    [40] VARGHESE S, CUTRUFELLO M G, ROMBI E, et al. CO oxidation and preferential oxidation of CO in the presence of hydrogen over SBA-15-templated CuO-Co3O4 catalysts[J]. Appl Catal A: Gen,2012,443:161−170.
    [41] IVANOVA S, PETIT C, PITCHON V. A new preparation method for the formation of gold nanoparticles on an oxide support[J]. Appl Catal A: Gen,2004,267(1/2):191−201. doi: 10.1016/j.apcata.2004.03.004
    [42] NIVANGUNE N T, RANADE V V, KELKAR A A. MgFeCe ternary layered double hydroxide as highly efficient and recyclable heterogeneous base catalyst for synthesis of dimethyl carbonate by transesterification[J]. Catal Lett,2017,147(10):2558−2569. doi: 10.1007/s10562-017-2146-x
    [43] YANG H, LIU X, QIN K, et al. Enhancement strategy of photoelectrocatalytic activity of cobalt-copper layer double hydroxide toward methanol oxidation: Cerium doping and modification with porphyrin[J]. Inorg Chem,2022,61(19):7414−7425. doi: 10.1021/acs.inorgchem.2c00438
    [44] DU Y, LIU X, LIU J, et al. DeNOx performance enhancement of Cu-based oxides via employing a TiO2 phase to modify LDH precursors[J]. RSC Adv,2022,12(16):10142−10153. doi: 10.1039/D2RA00316C
    [45] WU X, FENG Y, LIU X, et al. Redox & acidity optimizing of LDHs-based CoMnAl mixed oxides for enhancing NH3-SCR performance[J]. Appl Surf Sci,2019,495:1443513.
    [46] ZANG P, LIU J, HE Y, et al. LDH-derived preparation of CuMgFe layered double oxides for NH3-SCR and CO oxidation reactions: Performance study and synergistic mechanism[J]. Chem Eng J,2022,446:137414. doi: 10.1016/j.cej.2022.137414
    [47] LI J, ZHU P, ZHOU R. Effect of the preparation method on the performance of CuO-MnOx-CeO2 catalysts for selective oxidation of CO in H2-rich streams[J]. J Power Sources,2011,196(22):9590−9598. doi: 10.1016/j.jpowsour.2011.07.052
    [48] KONSOLAKIS M, CARABINEIRO S A, TAVARES P B, et al. Redox properties and VOC oxidation activity of Cu catalysts supported on Ce1-xSmxO delta mixed oxides[J]. J Hazard Mater,2013,261:512−521. doi: 10.1016/j.jhazmat.2013.08.016
    [49] GUO X, WU H, WANG H, et al. Sulfadiazine advanced oxidizing-degradation: Defects generation by boosting electron transfer at interfaces of Co-Cu LDH catalysts[J]. J Environ Chem Eng,2022,10(6):108411. doi: 10.1016/j.jece.2022.108411
    [50] WANG Z, DENG J, LIU Y, et al. Three-dimensionally ordered macroporous CoCr2O4-supported Au-Pd alloy nanoparticles: Highly active catalysts for methane combustion[J]. Catal Today,2017,281:467−476. doi: 10.1016/j.cattod.2016.05.035
    [51] HE C, YU Y, CHEN C, et al. Facile preparation of 3D ordered mesoporous CuOx-CeO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds[J]. RSC Adv,2013,3(42):19639−19656. doi: 10.1039/c3ra42566e
    [52] ZHANG Y, ZHAO L, DUAN J, et al. Insights into deNOx processing over Ce-modified Cu-BTC catalysts for the CO-SCR reaction at low temperature by in situ DRIFTS[J]. Sep Purif Technol,2020,234:116081. doi: 10.1016/j.seppur.2019.116081
    [53] SUN R, YU F, WAN Y, et al. Reducing N2O formation over CO-SCR systems with CuCe mixed metal oxides[J]. ChemCatChem,2021,13(11):2709−2718. doi: 10.1002/cctc.202100057
    [54] CAI S, ZHANG D, SHI L, et al. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts[J]. Nanoscale,2014,6(13):7346−7353. doi: 10.1039/C4NR00475B
    [55] LI L, HAN W, ZHANG J, et al. Controlled pore size of 3D mesoporous Cu-Ce based catalysts and influence of surface textures on the CO catalytic oxidation[J]. Microporous Mesoporpous Mater,2016,231:9−20. doi: 10.1016/j.micromeso.2016.05.018
    [56] LIU Z, LI J, BUETTNER M, et al. Metal-support interactions in CeO2-and SiO2-supported cobalt catalysts: Effect of support morphology, reducibility, and interfacial configuration[J]. ACS Appl Mater Interfaces,2019,11(18):17035−17049. doi: 10.1021/acsami.9b02455
    [57] WANG X, ZHANG C, ZHANG Z, et al. Insights into the interfacial effects in Cu-Co/CeOx catalysts on hydrogenolysis of 5-hydroxymethylfurfural to biofuel 2, 5-dimethylfuran[J]. J Colloid Interf Sci,2022,615:19−29. doi: 10.1016/j.jcis.2022.01.168
    [58] SHEN H, LI H, YANG Z, et al. Magic of hydrogen spillover: Understanding and application[J]. Green Energy Environ,2022,7(6):1161−1198. doi: 10.1016/j.gee.2022.01.013
    [59] XIONG M, GAO Z, QIN Y. Spillover in heterogeneous catalysis: New insights and opportunities[J]. ACS Catal,2021,11(5):3159−3172. doi: 10.1021/acscatal.0c05567
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  82
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-09-18
  • 录用日期:  2023-09-19
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回