留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S型异质结NiTiO3/CdS光催化页岩气返排废水产氢性能研究

刘雪妍 谭文雯 王婧茹 张茹 徐龙君 刘成伦

刘雪妍, 谭文雯, 王婧茹, 张茹, 徐龙君, 刘成伦. S型异质结NiTiO3/CdS光催化页岩气返排废水产氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 413-420. doi: 10.19906/j.cnki.JFCT.2023074
引用本文: 刘雪妍, 谭文雯, 王婧茹, 张茹, 徐龙君, 刘成伦. S型异质结NiTiO3/CdS光催化页岩气返排废水产氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 413-420. doi: 10.19906/j.cnki.JFCT.2023074
LIU Xueyan, TAN Wenwen, WANG Jingru, ZHANG Ru, XU Longjun, LIU Chenglun. Photocatalytic decomposition of shale gas flowback water producing hydrogen by S-scheme heterojunction NiTiO3/CdS[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 413-420. doi: 10.19906/j.cnki.JFCT.2023074
Citation: LIU Xueyan, TAN Wenwen, WANG Jingru, ZHANG Ru, XU Longjun, LIU Chenglun. Photocatalytic decomposition of shale gas flowback water producing hydrogen by S-scheme heterojunction NiTiO3/CdS[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 413-420. doi: 10.19906/j.cnki.JFCT.2023074

S型异质结NiTiO3/CdS光催化页岩气返排废水产氢性能研究

doi: 10.19906/j.cnki.JFCT.2023074
基金项目: 国家自然科学基金 (52174157)资助
详细信息
    通讯作者:

    Tel: 13752820583, E-mail: xulj@cqu.edu.cn

  • 中图分类号: X703.1

Photocatalytic decomposition of shale gas flowback water producing hydrogen by S-scheme heterojunction NiTiO3/CdS

Funds: The project was supported by National Natural Science Foundation of China (52174157).
  • 摘要: 本研究通过简单水热法制备出具有S型异质结构的NiTiO3/CdS光催化材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、比表面积分析及紫外-可见漫反射光谱(UV-vis DRS)等手段对光催化剂进行表征,并通过光催化页岩气返排废水产氢实验测试其产氢性能。结果表明,NiTiO3和CdS两者成功复合,15% NiTiO3/CdS表现出最强的产氢性能(1568.9 µmol/(g·h))和优异的循环利用潜力。本研究对开发高效稳定的S型异质结光催化剂、废水的多效利用及缓解能源短缺具有重要意义。
  • FIG. 3020.  FIG. 3020.

    FIG. 3020.  FIG. 3020.

    图  1  NTO/CS光催化剂产氢性能

    Figure  1  Hydrogen production performance of NTO/CS(a): H2 production yield; (b): rate constant.

    图  2  NTO、CS和NTO/CS的XRD谱图

    Figure  2  XRD spectra of NTO, CS and NTO/CS

    图  3  样品的SEM图、晶粒尺寸分布图及NTO/CS-15的TEM、HRTEM图片

    Figure  3  SEM for (a) NTO, (b) CS and (c) NTO/CS-15, (d) grain size distribution images of samples, (e) TEM and (f) HRTEM images of NTO/CS-15

    图  4  NTO、CS和NTO/CS-15的XPS能谱图

    Figure  4  XPS spectra for NTO, CS and NTO/CS-15

    (a): full spectrum; (b): Ni 2p; (c): Ti 2p; (d): O 1s; (e): Cd 3d; (f): S 2p.

    图  5  样品氮气吸附-脱附曲线(内含孔径分布)

    Figure  5  N2 adsorption-desorption isotherms and pore size distribution curves (inset) for CS and NTO/CS-15

    图  6  NTO、CS和NTO/CS-15的光学性能测试

    Figure  6  (a) UV-DRS and (b) band gap energy for NTO, CS and NTO/CS-15

    图  7  NTO、CS和NTO/CS-15的电化学性能测试

    Figure  7  (a) EIS and (b) TPR for NTO, CS and NTO/CS-15

    图  8  NTO/CS-15的循环实验产氢曲线及循环前后的XRD谱图

    Figure  8  (a) Stability test and (b) XRD patterns before and after 5 recycles for NTO/CS-15

    图  9  NiTiO3/CdS的光催化机理

    Figure  9  Photocatalytic mechanism over NiTiO3/CdS

  • [1] 郭扬. 世界视域下新能源替代化石能源的驱动效应[J]. 中国人口·资源与环境,2022,32(5):14−22.

    GUO Yang. Driving effects of alternative new energy sources for fossil fuels in the context of the world[J]. China Popul, ResEnviron,2022,32(5):14−22.
    [2] 李亮荣, 杨小喆, 陈楚欣, 等. 半导体核壳材料光催化剂分解水制氢研究进展[J]. 无机盐工业,2023,55(3):10−20.

    LI Liangrong, YANG Xiaozhe, CHEN Chuxin, et al. Research progress of photocatalytic water splitting of semiconductor core-shell materials for hydrogen production[J]. Inorg Chem Ind,2023,55(3):10−20.
    [3] 柴麒敏, 郭虹宇, 刘昌义, 等. 全球气候变化与中国行动方案——“十四五”规划期间中国气候治理(笔谈)[J]. 阅江学刊,2020,12(6):36−58.

    CHAI Qimin, GUO Hongyu, LIU Changyi, et al. Global climate change and China's action scheme: climate governance of China in the 14th five-year plan period from 2021 to 2025 (conversation by writing)[J]. Yuejiang Acad J,2020,12(6):36−58.
    [4] LAKHERA S K, RAJAN A, RUGM T P, et al. A review on particulate photocatalytic hydrogen production system: progress made in achieving high energy conversion efficiency and key challenges ahead[J]. Renewable Sustainable Energy Rev,2021,152:111694. doi: 10.1016/j.rser.2021.111694
    [5] 安攀, 张庆慧, 杨状, 等. 双碳目标下太阳能制氢技术的研究进展[J]. 化学学报,2022,80(12):1629−1642. doi: 10.6023/A22080362

    AN Pan, ZHANG Qinghui, YANG Zhuang, et al. Research progress of photocatalytic water splitting for hydrogen production using MOF based catalysts[J]. Acta Chim Sin,2022,80(12):1629−1642. doi: 10.6023/A22080362
    [6] WAKERLEY D W, KUEHNEL M F, ORCHARD K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
    [7] JI G, XU X, YANG H, et al. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 Materials[J]. Environ Sci Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
    [8] 张文超. 采用零价铁/过硫酸盐体系对页岩气返排液废水处理的研究[J]. 四川化工,2020,23(1):54−58.

    ZHANG Wenchao. Study on the treatment of shale gas flowback wastewater by zero-valent iron/persulfate system[J]. Sichuan Chem Ind,2020,23(1):54−58.
    [9] 于建国, 韩昫身, 金艳. 页岩气压裂返排液生物处理技术研究进展[J]. 石油与天然气化工,2022,51(5):131−138.

    YU Jianguo, HAN Xushen, JIN Yan. Biological treatment of shale gas flowback and produced watew: A review[J]. Chem Eng Oil Gas,2022,51(5):131−138.
    [10] 黄飞, 陈湘萍, 杨和平. 页岩气压裂返排液处理工艺研究[J]. 环境科学与技术,2013,36(S1):174−176.

    HUANG Fei, CHEN Xiangping, YANG Heping. The research of treatment process about fracturing flowback fluid in shale gas mining[J]. Environ Sci Technol,2013,36(S1):174−176.
    [11] 董刚, 陈锐. 页岩气压裂返排液处理技术研究进展[J]. 化学工程师,2023,37(4):73−78.

    DONG Gang, CHEN Rui. Application progress of shale gas fracturing flowback fluid treatment technology[J]. Chem Eng,2023,37(4):73−78.
    [12] 蒋灶, 徐龙君, 刘成伦. Ni-MOF/Zn0.5Cd0.5S合成及其光催化废水制氢研究[J/OL]. 燃料化学学报(中英文), 2023, 51(1): 34–51.

    JIANG Zao, XU Longjun, LIU Chenlun. Synthesis of Ni-MOF/Zn0.5Cd0.5S and the photocatalytic hydrogen production performance from wastewater [J/OL]. J Fuel Chem Technol, 2023, 51(1): 34–51.
    [13] ABDULLAH U, ALI M, PERVAIZ E. An inclusive review on recent advancements of cadmium sulfide nanostructures and its hybrids for photocatalytic and electrocatalytic applications[J]. Mol Catal,2021,508:111575. doi: 10.1016/j.mcat.2021.111575
    [14] LIU S, MA Y, CHI D, et al. Hollow heterostructure CoS/CdS photocatalysts with enhanced charge transfer for photocatalytic hydrogen production from seawater[J]. Int J Hydrogen Energy,2022,47(15):9220−9229. doi: 10.1016/j.ijhydene.2021.12.259
    [15] CHEN L, XIE X, SU T, et al. Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co−S bond as a bridge for electron transfer[J] Appl Surf Sci, 2021, 567: 150849.
    [16] MA W, ZHENG D, XIAO B, et al. An efficient photocatalytic system under visible light: In-situ growth cocatalyst Ni2P on the surface of CdS[J]. J Environ Chem Eng,2022,10(3):107822. doi: 10.1016/j.jece.2022.107822
    [17] JIANG K, JUNG H, PHAM T, et al. Modification of NiTiO3 visible light-driven photocatalysts by Nb doping and NbOx heterojunction: Oxygen vacancy in the Nb-doped NiTiO3 structure[J]. J Alloys Compd,2021,861:158636. doi: 10.1016/j.jallcom.2021.158636
    [18] LI H, WANG G, GONG H, et al. Hollow nanorods and amorphous Co9S8 quantum dots construct S-scheme heterojunction for efficient hydrogen evolution[J]. J Phys Chem C,2021,125(1):648−659. doi: 10.1021/acs.jpcc.0c10239
    [19] YAN T, LIU H, JIN Z. Graphdiyne based ternary GD-Cul-NiTiO3 S-scheme heterjunction photocatalyst for hydrogen evolution[J]. ACS Appl Mater Interfaces,2021,13(21):24896−24906. doi: 10.1021/acsami.1c04874
    [20] ALAM U, PANDEY A, VERMA N. An anthraquinone-integrated S-scheme-based NiTiO3-g-C3N4 composite with enhanced hydrogen production activity[J]. Int J Hydrogen Energy,2023,48(7):2532−2541. doi: 10.1016/j.ijhydene.2022.10.151
    [21] HU M, SHU J, XU L, et al. A novel nonmetal intercalated high crystalline g-C3N4 photocatalyst for efficiency enhanced H2 evolution[J]. Int J Hydrogen Energy,2022,47(23):11841−11852. doi: 10.1016/j.ijhydene.2022.01.227
    [22] GOMATHISANKAR P, HACHISUKA K, KATSUMATA H, et al. Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu[J]. Int J Hydrogen Energy,2013,38(27):11840−11846. doi: 10.1016/j.ijhydene.2013.06.131
    [23] LIU X, SHU J, WANG H, et al. One-pot preparation of a novel CoWO4/ZnWO4 p-n heterojunction photocatalyst for enhanced photocatalytic activity under visible light irradiation[J]. J Phys Chem Solids,2023,172:111061. doi: 10.1016/j.jpcs.2022.111061
    [24] QU Y, ZHOU W, JIANG L, et al. Novel heterogeneous CdS nanoparticles/NiTiO3 nanorods with enhanced visible-light-driven photocatalytic activity[J]. RSC Adv,2013,3(40):18305−18310. doi: 10.1039/c3ra42189a
    [25] FENG C, CHEN Z, HOU J, et al. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light[J]. Chem Eng J,2018,345:404−413. doi: 10.1016/j.cej.2018.03.155
    [26] DHINGRA S, SHARMA M, KRISHNAN V, et al. Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2, 5-Bis(hydroxymethyl)furan[J]. J Colloid Interface Sci,2022,615:346−356. doi: 10.1016/j.jcis.2022.01.190
    [27] ZOU Y, GUO C, CAO X, et al. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution[J]. J Environ Chem Eng,2021,9(6):106270. doi: 10.1016/j.jece.2021.106270
    [28] WANG L, CHENG, ZHANG L, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small,2021,17(41):2103447. doi: 10.1002/smll.202103447
    [29] JIANG Z, XIAO C, YIN X, et al. Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability[J]. Ceram Int,2020,46(8):10771−10778. doi: 10.1016/j.ceramint.2020.01.087
    [30] XU J, WANG L, CAO X. Polymer supported graphene-CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light[J]. Chem Eng J,2016,283:816−825. doi: 10.1016/j.cej.2015.08.018
  • 加载中
图(10)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  85
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-09
  • 修回日期:  2023-09-19
  • 录用日期:  2023-09-19
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回