留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学链重整过程中LaFeO3载氧体的CH4部分氧化反应机理研究

王娜娜 冯于川 郭欣 马素霞

王娜娜, 冯于川, 郭欣, 马素霞. 化学链重整过程中LaFeO3载氧体的CH4部分氧化反应机理研究[J]. 燃料化学学报(中英文), 2024, 52(4): 586-594. doi: 10.19906/j.cnki.JFCT.2023075
引用本文: 王娜娜, 冯于川, 郭欣, 马素霞. 化学链重整过程中LaFeO3载氧体的CH4部分氧化反应机理研究[J]. 燃料化学学报(中英文), 2024, 52(4): 586-594. doi: 10.19906/j.cnki.JFCT.2023075
WANG Nana, FENG Yuchuan, GUO Xin, MA Suxia. CH4 partial oxidation mechanism of LaFeO3 oxygen carrier in chemical looping reforming[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 586-594. doi: 10.19906/j.cnki.JFCT.2023075
Citation: WANG Nana, FENG Yuchuan, GUO Xin, MA Suxia. CH4 partial oxidation mechanism of LaFeO3 oxygen carrier in chemical looping reforming[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 586-594. doi: 10.19906/j.cnki.JFCT.2023075

化学链重整过程中LaFeO3载氧体的CH4部分氧化反应机理研究

doi: 10.19906/j.cnki.JFCT.2023075
基金项目: 山西省基础研究计划青年科学研究项目(202103021223077)资助
详细信息
    通讯作者:

    E-mail: fengyuchuan@tyut.edu.cn

  • 中图分类号: TE665.3

CH4 partial oxidation mechanism of LaFeO3 oxygen carrier in chemical looping reforming

Funds: The project was supported by the Fundamental Research Program of Shanxi Province (202103021223077).
  • 摘要: 本研究基于密度泛函理论(DFT)计算揭示了化学链重整过程中LaFeO3载氧体的CH4部分氧化反应机理,通过系统研究CH4吸附活化、H2和CO形成以及氧扩散等基元反应步骤,构建了CH4部分氧化反应网络。研究发现,CH4发生逐步脱氢反应形成H原子,其中,CH3脱氢反应所需要克服的能垒(1.50 eV)最高,是CH4逐步脱氢反应的限速步骤。载氧体表面H2形成有两种路径,其中,H原子从O顶位迁移到Fe顶位,然后与另外O顶位的H原子成键形成H2分子是主要途径。由于其相对较低的能垒(1.27 eV),CO的形成过程较易发生。氧扩散需要克服1.35 eV的能垒,表明氧扩散过程需要在高温下进行且扩散速率较低。通过比较各基元反应能垒,发现H2形成是LaFeO3载氧体CH4部分氧化反应动力学的限速步骤,而H迁移是限制H2形成的关键,加快H迁移是增强LaFeO3载氧体性能的主要途径。基于DFT计算研究系列A/B位点掺杂LaFeO3载氧体的H迁移过程,有望实现潜在A/B位点有效掺杂剂的快速筛选,指导高性能LaFeO3载氧体的设计开发。
  • FIG. 3082.  FIG. 3082.

    FIG. 3082.  FIG. 3082.

    图  1  甲烷化学链重整技术示意图

    Figure  1  Schematic diagram of methane chemical looping reforming

    图  2  (a) LaFeO3正交晶胞;(b) LaFeO3准立方超胞;(c) FeO2-终端LaFeO3(010)表面

    Figure  2  (a) LaFeO3 orthorhombic unit cell; (b) LaFeO3 pseudocubic cell; (c) FeO2-terminated LaFeO3(010) surface

    图  3  CHx (x=0−4)和H物种在LaFeO3(010)表面上最稳定的吸附构型、结构参数和吸附能(键长单位Å)

    Figure  3  The most stable adsorption configurations, structural parameters and adsorption energies of CHx (x=0–4) and H on Ca2Fe2O5(010) surface (the bond lengths are in Å)

    图  4  LaFeO3(010)表面CH4脱氢反应的初态、过渡态和终态

    Figure  4  Initial state (IS), transition state (TS) and final state (FS) of CH4 dehydrogenation on LaFeO3(010) surface

    图  5  LaFeO3(010)表面CH3脱氢反应的初态、过渡态和终态

    Figure  5  Initial state (IS), transition state (TS), and final state (FS) of CH3 dehydrogenation on LaFeO3(010) surface

    图  6  LaFeO3(010)表面CH2脱氢反应的初态、过渡态和终态

    Figure  6  Initial state (IS), transition state (TS), and final state (FS) of CH2 dehydrogenation on LaFeO3(010) surface

    图  7  LaFeO3(010)表面CH脱氢反应的初态、过渡态和终态

    Figure  7  Initial state (IS), transition state (TS), and final state (FS) of CH dehydrogenation on LaFeO3(010)

    图  8  LaFeO3(010)表面CH4逐步脱氢反应的势能图

    Figure  8  Potential energy of CH4 gradual dehydrogenation on LaFeO3(010) surface

    图  9  LaFeO3(010)表面H2形成的反应路径和势能图

    Figure  9  Reaction pathway and potential energy of H2 formation on LaFeO3(010) surface

    图  10  LaFeO3(010)表面H2形成的初态、过渡态和终态

    Figure  10  Initial state (IS), transition state (TS), and final state (FS) of H2 formation on LaFeO3(010) surface

    图  11  LaFeO3(010)表面CO形成的反应路径和势能图

    Figure  11  Reaction pathway and potential energy of CO formation on LaFeO3(010) surface

    图  12  LaFeO3(010)表面氧扩散路径和势能图

    Figure  12  Pathway and energy profiles of oxygen diffusion for LaFeO3(010) surface

    图  13  LaFeO3(010)表面CH4部分氧化的反应网络(数字表示各基元反应的能垒,VO表示表面氧空位)

    Figure  13  Reaction network of CH4 partial oxidation of on LaFeO3(010) surface (the energy barrier of each elementary steps is given, VO represents the surface oxygen vacancy)

    表  1  LaFeO3载氧体CH4部分氧化过程涉及的基元反应

    Table  1  The elementary steps for CH4 partial oxidation over LaFeO3 oxygen carrier

    No.Elementary steps
    CH4 adsorption activation
    1CH4+* → CH4*
    2CH4*+* → CH3*+H*
    3CH3*+* → CH2*+H*
    4CH2*+* → CH*+H*
    5CH*+* → C*+H*
    Surface reaction
    6H+* → H*
    72H* → H2(g)
    8C+* → C*
    9C*+OS (Ca2Fe2O5) → CO(g)
    Oxygen diffusion
    10OB (Ca2Fe2O5) → OS (Ca2Fe2O5)
    * and X* represent an unoccupied active site and the adsorbed species, respectively. OS and OB denote the surface oxygen and bulk oxygen of LaFeO3(010) surface, respectively.
    下载: 导出CSV
  • [1] BOYANO A, BLANCO-MARIGORTA A M, MOROSUK T, et al. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production[J]. Energy,2011,36:2202−2214. doi: 10.1016/j.energy.2010.05.020
    [2] ADÁNEZ J, ABAD A. Chemical-looping combustion: Status and research needs[J]. Proc Combust Inst,2019,37:4303−4317. doi: 10.1016/j.proci.2018.09.002
    [3] 金红光, 王宝群. 化学能梯级利用机理探讨[J]. 工程热物理学报,2004,25(2):181−184. doi: 10.3321/j.issn:0253-231X.2004.02.001

    JIN Hongguang, WANG Baoqun. Principle of cascading utilization of chemical energy[J]. J Eng Thermophys,2004,25(2):181−184. doi: 10.3321/j.issn:0253-231X.2004.02.001
    [4] 李振山, 韩海锦, 蔡宁生. 化学链燃烧的研究现状及进展[J]. 动力工程,2006,26(4):538−543.

    LIN Zhenshan, HAN Haijin, CAI Ningsheng. Research status and progress of chemical looping combustion[J]. J Power Eng,2006,26(4):538−543.
    [5] TANG M, XU L, FAN M. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review[J]. Appl Energy,2015,151:143−156. doi: 10.1016/j.apenergy.2015.04.017
    [6] 靳南南, 张立, 朱燕燕, 等. 甲烷化学链重整制合成气用氧载体的研究进展[J]. 天然气化工(C1化学与化工),2019,44(3):106−116.

    JIN Nannan, ZHANG Li, ZHU Yanyan, et al. Research progress of oxygen carrier for methane chemical looping reforming to synthesis gas[J]. Nat Gas Chem Ind,2019,44(3):106−116.
    [7] 黄振, 何方, 赵坤, 等. 基于晶格氧的甲烷化学链重整制合成气[J]. 化学进展,2012,24(8):1599−1609.

    HUANG Zhen, HE Fang, ZHAO Kun, et al. Synthesis gas production by chemical looping reforming of methane to using lattice oxygen[J]. Prog Chem,2012,24(8):1599−1609.
    [8] PEÑA M A, FIERRO J L G. Chemical structures and performance of perovskite oxides[J]. Chem Rev,2001,101:1981−2018. doi: 10.1021/cr980129f
    [9] MIHAI O, CHEN D, HOLMEN A. Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3[J]. J Catal,2012,293:175−185. doi: 10.1016/j.jcat.2012.06.022
    [10] ZHAO K, HE F, HUANG Z, et al. Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane[J]. Int J Hydrog Energy,2014,39:3243−3252. doi: 10.1016/j.ijhydene.2013.12.046
    [11] ZHENG Y, LI K, WANG H, et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Appl Catal B: Environ,2017,202:51−63. doi: 10.1016/j.apcatb.2016.08.024
    [12] NEAL L, SHAFIEFARHOOD A, LI F. Effect of core and shell compositions on MeOx@LaySr1−yFeO3 core-shell redox catalysts for chemical looping reforming of methane[J]. Appl Energy,2015,157:391−398. doi: 10.1016/j.apenergy.2015.06.028
    [13] SHAFIEFARHOOD A, GALINSKY N, HUANG Y, et al. Fe2O3@LaxSr1−xFeO3 core-shell redox catalyst for methane partial oxidation[J]. ChemCatChem,2014,6:790−799. doi: 10.1002/cctc.201301104
    [14] HE F, CHEN J, LIU S, et al. La1−xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: Identification of the surface elements and redox cyclic performance[J]. Int J Hydrog Energy,2019,44:10265−10276. doi: 10.1016/j.ijhydene.2019.03.002
    [15] CHANG H, BJØRGUM E, MIHAI O, et al. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation[J]. ACS Catal,2020,10:3707−3719. doi: 10.1021/acscatal.9b05154
    [16] ZHANG X, PEI C, CHANG X, et al. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting[J]. J Am Chem Soc,2020,142:11540−11549. doi: 10.1021/jacs.0c04643
    [17] ZHANG X, SU Y, PEI C, et al. Chemical looping steam reforming of methane over Ce-doped perovskites[J]. Chem Eng Sci,2020,223:115707. doi: 10.1016/j.ces.2020.115707
    [18] ZHAO K, HE F, HUANG Z, et al. Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Appl Energy,2016,168:193−203. doi: 10.1016/j.apenergy.2016.01.052
    [19] ZHANG L, XU W, WU J, et al. Identifying the role of A-site cations in modulating oxygen capacity of iron-based perovskite for enhanced chemical looping methane-to-syngas conversion[J]. ACS Catal,2020,10:9420−9430. doi: 10.1021/acscatal.0c01811
    [20] LI F, LUO S, SUN Z, et al. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations[J]. Energy Environ Sci,2011,4:3661−3667. doi: 10.1039/c1ee01325d
    [21] QIN L, CHENG Z, GUO M, et al. Impact of 1% Lanthanum dopant on carbonaceous fuel redox reactions with an iron-based oxygen carrier in chemical looping processes[J]. ACS Energy Lett,2017,2:70−74. doi: 10.1021/acsenergylett.6b00511
    [22] ZENG L, CHENG Z, FAN J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nat Rev Chem,2018,2:349−364. doi: 10.1038/s41570-018-0046-2
    [23] 梁志永, 覃吴, 王建业, 等. 化学链燃烧中基于密度泛函理论的铁基载氧体研究进展[J]. 热能动力工程,2018,33(1):1−5.

    LIANG Zhi-yong, QIN Wu, WANG Jian-ye, et al. Latest advances in the study of the Fe-based oxygen carrier in chemical looping combustion based on the density functional theory[J]. J Eng Therm,2018,33(1):1−5.
    [24] LIU Y, QIN L, CHENG Z, et al. Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation[J]. Nat Commun,2019,10:5503. doi: 10.1038/s41467-019-13560-0
    [25] YUAN Y, YOU H, RICARDEZ-SANDOVAL L. Recent advances on first-principles modeling for the design of materials in CO2 capture technologies[J]. Chin J Chem Eng,2019,27:1554−1565. doi: 10.1016/j.cjche.2018.10.017
    [26] FENG Y C, WANG N N, GUO X, et al. Reaction mechanism of Ca2Fe2O5 oxygen carrier with CO in chemical looping hydrogen production[J]. Appl Surf Sci,2020,534:147583. doi: 10.1016/j.apsusc.2020.147583
    [27] FENG Y C, WANG N N, GUO X. Reaction mechanism of methane conversion over Ca2Fe2O5 oxygen carrier in chemical looping hydrogen production[J]. Fuel,2021,290:120094. doi: 10.1016/j.fuel.2020.120094
    [28] FENG Y C, WANG N N, GUO X. Density functional theory study on improved reactivity of alkali-doped Fe2O3 oxygen carriers for chemical looping hydrogen production[J]. Fuel,2019,236:1057−1064. doi: 10.1016/j.fuel.2018.09.079
    [29] FENG Y C, CAI X, GUO X, et al. Influence mechanism of H2S on the reactivity of Ni-based oxygen carriers for chemical-looping combustion[J]. Chem Eng J,2016,295:461−467. doi: 10.1016/j.cej.2016.03.058
    [30] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. J Phys Condens Matter,2002,14(11):2717−2744. doi: 10.1088/0953-8984/14/11/301
    [31] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev Mod Phys,1992,64(4):1045−1097. doi: 10.1103/RevModPhys.64.1045
    [32] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B,1992,46(11):6671−6687. doi: 10.1103/PhysRevB.46.6671
    [33] WHITE J A, BIRD D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations[J]. Phys Rev B,1994,50(7):4954−4957. doi: 10.1103/PhysRevB.50.4954
    [34] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B,1990,41(11):7892−7895. doi: 10.1103/PhysRevB.41.7892
    [35] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B,1976,13(12):5188−5192. doi: 10.1103/PhysRevB.13.5188
    [36] RITZMANN A M, MUÑOZ-GARCÍA A B, PAVONE M, et al. Ab initio DFT+U analysis of oxygen vacancy formation and migration in La1−xSrxFeO3−δ (x=0, 0.25, 0.50)[J]. Chem Mater,2013,25(15):3011−3019. doi: 10.1021/cm401052w
    [37] BOATENG I W, TIA R, ADEI E, et al. A DFT+U investigation of hydrogen adsorption on the LaFeO3(010) surface[J]. Phys Chem Chem Phys,2017,19(10):7399−7409. doi: 10.1039/C6CP08698E
    [38] TAGUCHI H, MASUNAGA Y, HIROTA K, et al. Synthesis of perovskite-type (La1−xCax)FeO3 (0≤x≤0.2) at low temperature[J]. Mater Res Bull,2005,40(5):773−780. doi: 10.1016/j.materresbull.2005.02.009
    [39] GLAZER A. Simple ways of determining perovskite structures[J]. Acta Crystallogr A,1975,31(6):756−762. doi: 10.1107/S0567739475001635
    [40] CHEN Y, FAN J, LIU T, et al. Theoretical study on the effect of an O vacancy on the hydrogen storage properties of the LaFeO3 (010) surface[J]. Int J Hydrog Energy,2019,44(11):5374−5381. doi: 10.1016/j.ijhydene.2018.09.097
    [41] AU C T, NG C F, LIAO M S. Methane dissociation and syngas formation on Ru, Os, Rh, Ir, Pd, Pt, Cu, Ag, and Au: A theoretical study[J]. J Catal,1999,185:12−22. doi: 10.1006/jcat.1999.2498
    [42] FENG Y C, HU X D, GUO X, WANG N N. Exploration of the reaction mechanism of the LaFeO3 oxygen carrier for chemical-looping steam methane reforming: a DFT study[J]. Phys Chem Chem Phys,2023,25:13033−13040. doi: 10.1039/D2CP05795F
    [43] HUANG L, TANG M, FAN M, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Appl Energy,2015,159:132−144. doi: 10.1016/j.apenergy.2015.08.118
    [44] DAI X, CHENG J, LI Z, et al. Reduction kinetics of lanthanum ferrite perovskite for the production of synthesis gas by chemical-looping methane reforming[J]. Chem Eng Sci,2016,153:236−245. doi: 10.1016/j.ces.2016.07.011
    [45] 徐圆圆, 付迁, 闫永波, 等. 钙钛矿型LaFeO3载氧体生物质化学链气化热力学分析及实验研究[J]. 可再生能源,2023,41(6):731−737. doi: 10.3969/j.issn.1671-5292.2023.06.004

    XU Yuan-yuan, FU Qian, YAN Yong-bo, et al. Thermodynamic analysis and experimental study on biomass chemical looping gasification of perovskite LaFeO3 oxygen carrier[J]. Renewable Energy Res,2023,41(6):731−737. doi: 10.3969/j.issn.1671-5292.2023.06.004
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  18
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 修回日期:  2023-09-26
  • 录用日期:  2023-09-26
  • 网络出版日期:  2023-10-31
  • 刊出日期:  2024-04-03

目录

    /

    返回文章
    返回