留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质连续式水热预处理及固相产物热解特性研究

刘天龙 李琦 李中宏 杨沛艳 庞新博 黄鑫 赵小燕 曹景沛

刘天龙, 李琦, 李中宏, 杨沛艳, 庞新博, 黄鑫, 赵小燕, 曹景沛. 生物质连续式水热预处理及固相产物热解特性研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023082
引用本文: 刘天龙, 李琦, 李中宏, 杨沛艳, 庞新博, 黄鑫, 赵小燕, 曹景沛. 生物质连续式水热预处理及固相产物热解特性研究[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023082
LIU Tianlong, LI Qi, LI Zhonghong, YANG Peiyan, PANG Xinbo, HUANG Xin, ZHAO Xiaoyan, Cao Jingpei. Hydrothermal flowthrough pretreatment of biomass and pyrolysis characteristics of residual solid[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023082
Citation: LIU Tianlong, LI Qi, LI Zhonghong, YANG Peiyan, PANG Xinbo, HUANG Xin, ZHAO Xiaoyan, Cao Jingpei. Hydrothermal flowthrough pretreatment of biomass and pyrolysis characteristics of residual solid[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023082

生物质连续式水热预处理及固相产物热解特性研究

doi: 10.19906/j.cnki.JFCT.2023082
基金项目: 国家自然科学基金(22108294),中国博士后科学基金(2021M693412)和江苏省高校优势学科和陕煤-秦岭基础科学研究五年行动计划资助项目资助
详细信息
    通讯作者:

    E-mail: tianlong.liu@cumt.edu.cn

    caojingpei@cumt.edu.cn

  • 中图分类号: TQ35

Hydrothermal flowthrough pretreatment of biomass and pyrolysis characteristics of residual solid

Funds: The project was supported by the National Natural Science Foundation of China (22108294), the China Postdoctoral Science Foundation (2021M693412), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Shccig-Qinling Program.
  • 摘要: 生物质复杂的多组分体系和致密交联的化学结构是制约其高值化利用的关键,实现木质纤维组分预分离对生物质分级转化具有重要意义。实验采用连续式水热法预处理稻壳,考察了水热温度和流量对稻壳分解速率以及固相产物化学组成与热解特性的影响。结果表明,稻壳的水热分解符合表面化学反应过程控制的未反应收缩核模型,预处理在180 ℃下能脱除稻壳95%的碱及碱土金属、92%的半纤维素和59%的木质素,极大保留了纤维素组分,这使得稻壳热解产物中以左旋葡聚糖为主的脱水糖的相对含量从9.9%提高至48.2%。
  • 图  1  连续式水热预处理装置示意图

    Figure  1  Schematic diagram of the experimental setup for hydrothermal flowthrough pretreatment

    图  2  不同水热预处理(a)流量和(b)温度下xTOC随时间的变化

    Figure  2  Temporal changes in xTOC as a function of (a) flowrate and (b) temperature during hydrothermal pretreatment (xTOC is determined by the amount of TOC in the liquid divided by that of feedstock)

    图  3  液相产物的(a)单糖收率和(b)每10 min的单糖和低聚糖收率、xTOC和pH值

    Figure  3  Results of (a) overall yield of saccharides of liquid product and (b) changes in yields of mono- and oligo-saccharides, xTOC and pH values of liquid effluent collected in each 10 min (RH was pretreated at 180 ℃ and 5 mL/min water flow, the liquid product was subjected to hydrolysis for determining the overall yield of saccharides)

    图  4  稻壳水热预处理前后的扫描电子显微镜表征

    Figure  4  Scanning electron microscope characterization of (a) RH and (b) treated RH (Conditions for pretreatment: reaction at 180 ℃ for 150 min and 5 mL/min water flow)

    图  5  不同温度下1−(1−xTOC)1/3与时间的关系(a)和Arrhenius曲线(b)

    Figure  5  Plots of (a) 1−(1−xTOC)1/3 against time under different temperatures and (b) lnk against 1/T based on the Arrhenius equation

    图  6  水热预处理温度、时间和流量对固相产物收率的影响

    Figure  6  Effects of temperature, time and flowrate on the yield of residual solid during hydrothermal pretreatment (An asterisk represents the yield of residual solid by a batch mode under reaction conditions of 180 ℃ for 1 h and RH/water mass ratio of 1∶40)

    图  7  稻壳及固相产物的热重(TG)和微分热重(DTG)曲线

    Figure  7  Thermogravimetric (TG) and differential thermogravimetric (DTG) profiles of RH and residual solids (Pretreatment conditions for a flow mode are 180−190 ℃ for 150 min and 5 mL/min water flow and for a batch mode are 180 ℃ for 60 min and RH/water mass ratio of 1∶40. x represents a mass-based conversion of the sample. DTG profile was deconvoluted into three peaks that were assumed to occur from the pyrolysis of hemicellulose, cellulose, and lignin)

    图  8  稻壳及固相产物的CPy-GC/MS总离子流色谱图

    Figure  8  Total ion chromatograms from CPy-GC/MS tests of RH and residual solids

    图  9  稻壳及固相产物热解产物的(a)峰面积和(b)相对含量

    Figure  9  Peak area (a) and relative content (b) of products from curie-point pyrolysis of RH and residual solids

    图  11  稻壳及固相产物的碱及碱土金属含量

    Figure  11  Contents of alkali and alkaline-earth metallic species in RH and residual solids

    图  10  左旋葡聚糖形成与转化反应路径[23]

    Figure  10  Mechanism of formation and conversion of levoglucosan (adapted from Ref. 23) (LGA, levoglucosan; DGP, 1,4:3,6-dianhydro-β-D-glucopyranose; AGF, 1,6-anhydro-β-D-glucofuranose; and LGO, levoglucosenone)

    图  12  固相产物灰分的XRD谱图

    Figure  12  XRD patterns of ash of residual solid (A photograph of ashed sample for XRD analysis is presented in the figure and the solid was prepared under conditions of 180 ℃ for 150 min and 5 mL/min water flow)

    表  1  稻壳及固相产物的工业分析、元素分析和热值

    Table  1  Proximate and ultimate analyses and higher heating values of RH and residual solids

    SampleaProximate analysis
    wdry/%
    Ultimate analysis
    wdaf/%b
    Atomic ratioHHVg/
    (MJ·kg−1)
    AVdFCeCHNOfH/CO/C
    RH19.960.619.549.06.40.544.11.54830.675214.3
    RH-16019.066.214.850.26.20.443.31.47340.647514.7
    RH-17016.874.78.551.16.00.442.51.39630.623915.2
    RH-18011.978.99.254.35.40.340.11.17670.554216.6
    RH-1909.084.26.855.25.10.339.51.09670.537217.2
    RH-180c22.165.312.655.55.90.438.21.26890.517515.9
    a: RH-x samples represent the residual solid, where x is the temperature for hydrothermal pretreatment; b: daf is the abbreviation of dry-ash-free; c: residual solid prepared by a batch mode under conditions of 180 ℃ for 1 h and 1∶40 mass ratio (RH/water); d: volatile matter; d: fixed carbon; e: calculated by difference; f: higher heating value, calculated by Dulong’s formula: Q = 0.3383C+1.442(H−0.125O), where C, H, and O are the contents of carbon, hydrogen, and oxygen, respectively.
    下载: 导出CSV

    表  2  稻壳及固相产物的化学组成分析

    Table  2  Chemical components of RH and residual solids

    PretreatmentComposition wsample/%Composition wRH/%
    ashhemi.cel.lig.extract.ashhemi.cel.lig.extract.
    RH19.919.331.824.24.819.919.331.824.24.8
    Flow mode11.93.363.521.3<0.15.51.529.49.9<0.1
    Batch mode22.17.243.226.51.113.84.527.016.50.7
    Hemi, cel, lig and extract are abbreviations of hemicellulose, cellulose, lignin and extractives, respectively. Pretreatment conditions for a flow mode are 180 ℃ for 150 min and 5 mL/min water flow and for a batch mode are 180 ℃ for 60 min and 1∶40 of RH/water mass ratio.
    下载: 导出CSV

    表  3  稻壳灰分SiO2纯度和比表面积分析和对比

    Table  3  Results of SiO2 purity and specific surface area of RH ashes

    Sample no.SiO2 puritya
    /%
    Surface areab
    /(m2·g−1)
    MethodRef.
    191.17raw rice huskthis study
    299.70216flow mode, 180 ℃
    398.91207batch mode, 180 ℃
    499.862183% HCl, room temperature
    5N.A.16410% HCl, 100 ℃[26]
    696.89N.A.water rinsing, room temperature[27]
    799.80N.A.5% HCl refluxing, 130 ℃
    899.52N.A.ion liquid, room temperature
    995.77116raw rice husk[28]
    1099.582180.5 mol/L HCl, 60 ℃
    1199.082080.5 mol/L H2SO4, 60 ℃
    1291.2521raw rice husk[29]
    1397.94134hydrothermo-baric treatment, 300 ℃
    1499.77N.A.5% citric acid, 80 ℃[30]
    a: by X-ray fluorescence spectrometry; b: calculated by the Brunauer-Emmett-Taller method; N.A., not available.
    下载: 导出CSV
  • [1] ZAKZESKI J, BRUIJNINCX P C A, JONGERIUS A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev,2010,110(6):3552−99. doi: 10.1021/cr900354u
    [2] 蒋叶涛, 宋晓强, 孙勇, 等. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展,2017,29(10):1273−1284.

    JIANG Yetao, SONG Xiaoqiang, SUN Yong, et al. Strategies of prior-fractionation for the graded utilization of lignocellulose[J]. Prog Chem.,2017,29(10):1273−1284.
    [3] KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant[J]. J Supercrit Fluids,2007,39(3):362−380. doi: 10.1016/j.supflu.2006.03.016
    [4] BACH Q V, TRAN K Q, KHALIL R A, et al. Comparative assessment of wet torrefaction[J]. Energy Fuels,2013,27(11):6743−6753. doi: 10.1021/ef401295w
    [5] CHANG S, ZHAO Z, ZHENG A, et al. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor[J]. Bioresour Technol,2013,138:321−328. doi: 10.1016/j.biortech.2013.03.170
    [6] YU Q, ZHUANG X, YUAN Z, et al. Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery[J]. Appl Energy,2011,88(7):2472−2479. doi: 10.1016/j.apenergy.2011.01.031
    [7] FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuel Bioprod Biorefin,2010,4(2):160−177. doi: 10.1002/bbb.198
    [8] SOLAR J, DE MARCO I, CABALLERO B M, et al. Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor[J]. Biomass Bioenergy,2016,95:416−423. doi: 10.1016/j.biombioe.2016.07.004
    [9] YUAN X Z, TONG J Y, ZENG G M, et al. Comparative studies of products obtained at different temperatures during straw liquefaction by hot compressed water[J]. Energy Fuels,2009,23:3262−3267. doi: 10.1021/ef900027d
    [10] LENG L, ZHOU W. Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from the hydrothermal treatment of wet biomass: A review[J]. Energy Sources, Part A,2018,40(22):2648−2659. doi: 10.1080/15567036.2018.1495780
    [11] 余强, 庄新姝, 袁振宏, 等. 高温液态水中甜高粱渣半纤维素水解及其机理[J]. 化工学报,2012,63(2):599−605. doi: 10.3969/j.issn.0438-1157.2012.02.037

    YU Qiang, ZHUANG Xinshu, YUAN Zhenhong, et al. Hydrolysis of sweet sorghum bagasse hemicellulose with liquid hot water and its mechanism[J]. CIESC J,2012,63(2):599−605. doi: 10.3969/j.issn.0438-1157.2012.02.037
    [12] 于建国, 姜罗, 刘李, 等. 亚熔盐低温浸取钾长石工艺过程[J]. 华东理工大学学报(自然科学版),2019,45(2):206−215. doi: 10.14135/j.cnki.1006-3080.20180322001

    YU Jianguo, JIANG Luo, LIU Li, et al. Leaching process of potassium feldspar by sub-molten salt at low temperature[J]. J East China Univ Sci Technol,2019,45(2):206−215. doi: 10.14135/j.cnki.1006-3080.20180322001
    [13] NIU Y, LV Y, LEI Y, et al. Biomass torrefaction: Properties, applications, challenges, and economy[J]. Renewable Sustainable Energy Rev,2019,115:1−18.
    [14] GüLEç F, RIESCO L M G, WILLIAMS O, et al. Hydrothermal conversion of different lignocellulosic biomass feedstocks-Effect of the process conditions on hydrochar structures[J]. Fuel,2021,302:1−18.
    [15] BACH Q V, TRAN K Q, SKREIBERG Ø. Comparative study on the thermal degradation of dry- and wet-torrefied woods[J]. Appl Energy,2017,185:1051−1058. doi: 10.1016/j.apenergy.2016.01.079
    [16] LIANG Y G, CHENG B, SI Y B, et al. Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis[J]. Renew Energy,2014,68:111−117. doi: 10.1016/j.renene.2014.01.041
    [17] TEKIN K, KARAGöZ S, BEKTAŞ S. A review of hydrothermal biomass processing[J]. Renewable Sustainable Energy Rev,2014,40:673−687. doi: 10.1016/j.rser.2014.07.216
    [18] ZHANG B, ZHONG Z, MIN M, et al. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study[J]. Bioresour Technol,2015,189:30−35. doi: 10.1016/j.biortech.2015.03.092
    [19] XIN X, PANG S, DE MIGUEL MERCADER F, et al. The effect of biomass pretreatment on catalytic pyrolysis products of pine wood by Py-GC/MS and principal component analysis[J]. J Anal Appl Pyrolysis,2019,138:145−153. doi: 10.1016/j.jaap.2018.12.018
    [20] PATWARDHAN P R, SATRIO J A, BROWN R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresour Technol,2010,101(12):4646−4655. doi: 10.1016/j.biortech.2010.01.112
    [21] WANG K, ZHANG J, SHANKS B H, et al. The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation[J]. Appl Energy,2015,148:115−120. doi: 10.1016/j.apenergy.2015.03.034
    [22] DALLUGE D L, KIM K H, BROWN R C. The influence of alkali and alkaline earth metals on char and volatile aromatics from fast pyrolysis of lignin[J]. J Anal Appl Pyrolysis,2017,127:385−393. doi: 10.1016/j.jaap.2017.07.011
    [23] LIN Y C, CHO J, TOMPSETT G A, et al. Kinetics and mechanism of cellulose pyrolysis[J]. J Phys Chem C,2009,113(46):20097−20107. doi: 10.1021/jp906702p
    [24] VAMVUKA D, TROULINOS S, KASTANAKI E. The effect of mineral matter on the physical and chemical activation of low rank coal and biomass materials[J]. Fuel,2006,85(12/13):1763−71. doi: 10.1016/j.fuel.2006.03.005
    [25] KANIOWSKI W, TALER J, WANG X, et al. Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers[J]. Fuel,2022,326:1−11.
    [26] WANG W, MARTIN J C, FAN X, et al. Silica nanoparticles and frameworks from rice husk biomass[J]. ACS Appl Mater Interfaces,2012,4(2):977−981. doi: 10.1021/am201619u
    [27] CHEN H, WANG W, MARTIN J C, et al. Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: A comprehensive utilization of rice husk biomass[J]. ACS Sustainable Chem Eng,2012,1(2):254−259.
    [28] BAKAR R A, YAHYA R, GAN S N. Production of high purity amorphous silica from rice husk[J]. Proced Chem,2016,19:189−195. doi: 10.1016/j.proche.2016.03.092
    [29] BENJAMIN IYENAGBE U, MAMAT O. Hydro thermo-baric processing and properties of nano silica from rice husk[J]. Appl Mech Mater,2012,152−154:177−182.
    [30] UMEDA J, KONDOH K. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal[J]. Ind Crop Prod,2010,32(3):539−544. doi: 10.1016/j.indcrop.2010.07.002
    [31] WANG W, LEMAIRE R, BENSAKHRIA A, et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass[J]. J Anal Appl Pyrolysis,2022,163:1−33.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  28
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2023-12-13
  • 录用日期:  2023-12-13
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回