留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火焰喷雾热解制Pd-Pt/CeO2催化甲烷燃烧的性能研究

武琳渊 王乙 陈召英 田庆玲 王琳茹 付紫君 赵宁 王晓波 黄鑫

武琳渊, 王乙, 陈召英, 田庆玲, 王琳茹, 付紫君, 赵宁, 王晓波, 黄鑫. 火焰喷雾热解制Pd-Pt/CeO2催化甲烷燃烧的性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 725-734. doi: 10.19906/j.cnki.JFCT.2023083
引用本文: 武琳渊, 王乙, 陈召英, 田庆玲, 王琳茹, 付紫君, 赵宁, 王晓波, 黄鑫. 火焰喷雾热解制Pd-Pt/CeO2催化甲烷燃烧的性能研究[J]. 燃料化学学报(中英文), 2024, 52(5): 725-734. doi: 10.19906/j.cnki.JFCT.2023083
WU Linyuan, WANG Yi, CHEN Zhaoying, TIAN Qingling, WANG Linru, FU Zijun, ZHAO Ning, WANG Xiaobo, HUANG Xin. Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 725-734. doi: 10.19906/j.cnki.JFCT.2023083
Citation: WU Linyuan, WANG Yi, CHEN Zhaoying, TIAN Qingling, WANG Linru, FU Zijun, ZHAO Ning, WANG Xiaobo, HUANG Xin. Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 725-734. doi: 10.19906/j.cnki.JFCT.2023083

火焰喷雾热解制Pd-Pt/CeO2催化甲烷燃烧的性能研究

doi: 10.19906/j.cnki.JFCT.2023083
基金项目: 煤与煤层气共采国家重点实验室开放基金 (2022KF12),山西省科技成果转化引导专项 (202204021301010),山西省科技创新人才团队项目 (202204051002025)和国家自然科学基金 (52004177)资助
详细信息
    通讯作者:

    Tel: 15535198775, E-mail: wxbtyut@163.com

    huangxin11987@163.com

  • 中图分类号: O643

Methane catalytic combustion over flame spray pyrolysis-synthesized Pd-Pt/CeO2 catalyst

Funds: The project was supported by State Key Laboratory of Coal and CBM Co-mining (2022KF12), Shanxi Province Science and Technology Achievement Transformation Guidance Special Project (202204021301010), Shanxi Province Science and Technology Innovation Talent Team (202204051002025), National Natural Science Foundation of China (52004177).
  • 摘要: 火焰喷雾热解法(FSP)是一种简单、快速、可规模化制备纳米催化剂的技术。通过火焰喷雾热解法合成CeO2和Pt-CeO2载体、Pd-Pt-CeO2催化剂,采用浸渍法在CeO2和Pt-CeO2载体分别沉积Pd-Pt和Pd而制得Pd-Pt双金属催化剂,并考察其甲烷催化燃烧性能。利用ICP、XRD、TEM、BET、H2-TPR、XPS和Raman对催化剂的物化性质进行分析。TEM结果表明,Pd-Pt/CeO2催化剂中Pd和Pt物种高分散于CeO2载体。相比于一步法(one step)制得的Pd-Pt-CeO2(OS-FSP)催化剂,共浸渍法制得Pd-Pt/CeO2(0.25)-WI的催化活性更高,其t50降低了60 ℃,且稳定运行60 h而没有明显失活。这归因于Pd-Pt/CeO2(0.25)-WI催化剂表面上Pd0/Pd2+和Ce3+/Ce4+物质的量比更高、晶格氧更多,进而导致其具有良好的甲烷催化燃烧性能。
  • FIG. 3137.  FIG. 3137.

    FIG. 3137.  FIG. 3137.

    图  1  FSP装置示意图(a)和实际照片(b)

    Figure  1  Schematic diagram and photograph of the FSP device

    图  2  四种催化剂的(a) CH4转化率随反应温度的变化、(b) 表观活化能比较和(c) Pd-Pt/CeO2(0.25)-WI和Pd-Pt-CeO2(OS-FSP)催化剂在710 ℃的稳定性比较

    Figure  2  (a) CH4 conversion as a function of reaction temperature, (b) corresponding Arrhenius plots over four catalysts and (c) stability test over Pd-Pt/CeO2(0.25)-WI and Pd-Pt-CeO2(OS-FSP) catalysts at 710 ℃ (0.1 g catalysts, CH4:O2:N2 = 0.5:10:89.5, GHSV = 15000 mL/(g·h))

    图  3  四种催化剂的XRD谱图

    Figure  3  XRD patterns of four catalysts

    图  4  (a)−(f) Pd-Pt/CeO2(0.25)-WI和(g)−(l) Pd-Pt-CeO2(OS-FSP)催化剂的HAADF-STEM图像及其EDX元素扫描

    Figure  4  HAADF-STEM and corresponding EDX elemental mapping of (a)−(f) Pd-Pt/CeO2(0.25)-WI and (g)−(l) Pd-Pt-CeO2(OS-FSP) catalysts

    图  5  Pd-Pt/CeO2(0.25)-WI和Pd-Pt-CeO2(OS-FSP)催化剂的(a) N2吸附-脱附曲线和(b) 孔径分布

    Figure  5  (a)N2 adsorption-desorption isotherm and (b) pore size distribution of Pd-Pt/CeO2(0.25)-WI and Pd-Pt-CeO2(OS-FSP) catalysts

    图  6  (a)、(b) Pd-Pt/CeO2(0.25)-WI和(c)、(d) Pd-Pt-CeO2(OS-FSP)催化剂的HR-TEM图像

    Figure  6  HR-TEM images of (a), (b) Pd-Pt/CeO2(0.25)-WI and (c), (d) Pd-Pt-CeO2(OS-FSP) catalysts

    图  7  四种催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of four catalysts

    图  8  四种催化剂的Raman谱图

    Figure  8  Raman profiles of four catalysts

    图  9  Pd-Pt/CeO2(0.25)-WI和Pd-Pt-CeO2(OS-FSP)催化剂的(a) 全谱谱图、(b) Pd 3d、(c) O 1s、(d) Ce 3d XPS谱图

    Figure  9  XPS profiles of (a) wide, (b) Pd 3d, (c) O 1s, (d) Ce 3d for Pd-Pt/CeO2(0.25)-WI and Pd-Pt-CeO2(OS-FSP) catalysts

    表  1  四种催化剂的ICP-OES结果

    Table  1  ICP-OES results of four catalysts

    CatalystMetal loading w/%
    PdPt
    Pd-Pt-CeO2(OS-FSP)0.890.09
    Pd-Pt/CeO2(0.25)-WI0.910.11
    Pd-Pt/CeO2(0.5)-WI0.890.10
    Pd/Pt-CeO2(FSP)-WI0.880.12
    下载: 导出CSV

    表  2  四种催化剂的t10t50t90

    Table  2  t10, t50 and t90 results of four catalysts

    Catalystt10/℃t50/℃t90/℃
    Pd-Pt-CeO2(OS-FSP)540677785
    Pd-Pt/CeO2(0.25)-WI510617729
    Pd-Pt/CeO2(0.5)-WI540654761
    Pd/Pt-CeO2(FSP)-WI511622740
    下载: 导出CSV

    表  3  Pd-Pt/CeO2(0.25)-WI和Pd-Pt-CeO2(OS-FSP)催化剂上Pd、Pt、Ce和O的表面原子浓度和不同元素的价态分布

    Table  3  Surface atom concentration of Pd, Pt, Ce and O and valence distribution of different elements from XPS data on Pd-Pt/CeO2(0.25)-WI and Pd-Pt-CeO2(OS-FSP) catalysts

    CatalystSurface atom concentrationPd0/Pd2+Ce3+/Ce4+Oads/Olat
    PdPtCeO
    Pd-Pt/CeO2(0.25)-WI0.570.1017.3981.940.850.530.54
    Pd-Pt-CeO2(OS-FSP)0.470.0417.0482.450.270.470.50
    下载: 导出CSV
  • [1] MURATA K, KOSUGE D, OHYAMA J, et al. Exploiting metal-support interactions to tune the redox properties of supported Pd catalysts for methane combustion[J]. ACS Catal,2019,10:1381−1387.
    [2] LI T, YAO Y, HUANG Z, et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion[J]. Nat Catal,2021,4:62−70. doi: 10.1038/s41929-020-00554-1
    [3] 黄鑫, 焦熙, 黄国宝, 等. 甲烷催化燃烧钯基催化剂研究进展[J]. 低碳化学与化工,2023,48:147−154.

    HUANG Xin, JIAO Xi, HUANG Guobao, et al. Research progress on Pd-based catalysts for methane catalytic combustion[J]. Low-Carbon Chem Chem Eng,2023,48:147−154.
    [4] PENG S, LIN X, THOMPSON R L, et al. Wetland emission and atmospheric sink changes explain methane growth in 2020[J]. Nature,2022,612:477−482. doi: 10.1038/s41586-022-05447-w
    [5] KHOLOD N, EVANS M, PILCHER R C, et al. Global methane emissions from coal mining to continue growing even with declining coal production[J]. J Clean Prod,2020,256:120489. doi: 10.1016/j.jclepro.2020.120489
    [6] YASUMURA S, SAITA K, MIYAKAGE T, et al. Designing main-group catalysts for low-temperature methane combustion by ozone[J]. Nat Commun,2023,14:3926. doi: 10.1038/s41467-023-39541-y
    [7] FENG X, JIANG L, LI D, et al. Progress and key challenges in catalytic combustion of lean methane[J]. J Energy Chem,2022,75:173−215. doi: 10.1016/j.jechem.2022.08.001
    [8] HOU Z, DAI L, DENG J, et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst[J]. Angew Chem Int Ed,2022,61:202201655. doi: 10.1002/anie.202201655
    [9] LIU Z, XU G, ZENG L, et al. Anchoring Pt-doped PdO nanoparticles on γ-Al2O3 with highly dispersed La sites to create a methane oxidation catalyst[J]. Appl Catal B: Environ,2023,324:122259. doi: 10.1016/j.apcatb.2022.122259
    [10] WANG X, ZHANG X, CAO M, et al. Ordered mesoporous Pd-La/Al2O3 catalysts for enhanced methane combustion[J]. Energy Fuels,2022,36:6999−7005.
    [11] PARRES-ESCLAPEZ S, ILLÁN-GÓMEZ M J, DE LECEA C S M, et al. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt[J]. Appl Catal B: Environ,2010,96:370−378. doi: 10.1016/j.apcatb.2010.02.034
    [12] PARK J, KIM D, BYUN S W, et al. Impact of Pd: Pt ratio of Pd/Pt bimetallic catalyst on CH4 oxidation[J]. Appl Catal B: Environ,2022,316:121623. doi: 10.1016/j.apcatb.2022.121623
    [13] HUANG X, ZHANG X, DENG C, et al. Boosting methane catalytic combustion by confining PdO-Pd interfaces in zeolite nanosheets[J]. Fuel,2023,344:127693. doi: 10.1016/j.fuel.2023.127693
    [14] MURAVEV V, PARASTAEV A, VAN DEN BOSCH Y, et al. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts[J]. Science,2023,380:1174−1179. doi: 10.1126/science.adf9082
    [15] VAN VEGTEN N, MACIEJEWSKI M, KRUMEICH F, et al. Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pd catalysts[J]. Appl Catal B: Environ,2009,93:38−49. doi: 10.1016/j.apcatb.2009.09.010
    [16] CHIARELLO G L, GRUNWALDT J D, FERRI D, et al. Flame-synthesized LaCoO3-supported Pd: 1. Structure, thermal stability and reducibility[J]. J Catal,2007,252:127−136. doi: 10.1016/j.jcat.2007.10.004
    [17] STROBEL R, GRUNWALDT J D, CAMENZINDA, et al. Flame-made alumina supported Pd-Pt nanoparticles: Structural properties and catalytic behavior in methane combustion[J]. Catal Lett,2005,104:9−16. doi: 10.1007/s10562-005-7429-y
    [18] WANG N, LI S, ZONG Y, et al. Sintering inhibition of flame-made Pd/CeO2 nanocatalyst for low-temperature methane combustion[J]. J Aerosol Sci,2017,105:64−72. doi: 10.1016/j.jaerosci.2016.11.017
    [19] 康建东. 铜基催化剂氧化低浓度甲烷的反应动力学及性能调控[D]. 重庆: 重庆大学, 2022.

    KANG Jiandong. Oxidation of low-concentration methane regulation of copper-based catalysts for reaction kinetics and performance[D]. Chongqing: Chongqing University, 2022.
    [20] XIONG H, KUNWAR D, JIANG D, et al. Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation[J]. Nat Catal,2021,4:830−839. doi: 10.1038/s41929-021-00680-4
    [21] EGGART D, HUANG X, ZIMINA A, et al. Operando XAS study of Pt-doped CeO2 for the nonoxidative conversion of methane[J]. ACS Catal,2022,12:3897−3908. doi: 10.1021/acscatal.2c00092
    [22] 王晓波, 邓存宝, 邓汉忠, 等. 缺陷钙钛矿LaMnO3催化煤矿乏风瓦斯燃烧性能[J]. 煤炭学报,2022,47:1588−1595.

    WANG Xiaobo, DENG Cunbao, DENG Hanzhong, et al. Defective perovskite LaMnO3 catalysts for ventilation air methane combustion[J]. J China Coal Soc,2022,47:1588−1595.
    [23] YANG J, PENG M, REN G, et al. A hydrothermally stable irreducible oxide-modified Pd/MgAl2O4 catalyst for methane combustion[J]. Angew Chem Int Ed,2020,59:18522−18526. doi: 10.1002/anie.202009050
    [24] GÄNZLER A M, CASAPU M, MAURER F, et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size[J]. ACS Catal,2018,8:4800−4811. doi: 10.1021/acscatal.8b00330
    [25] LI F, LEI L, YI J, et al. Performance, structure and mechanisms of Pd catalyst supported on M-Doped (M= La, Ba and K) CeO2 for methane oxidation[J]. Catal Lett,2023,153:1847−1858. doi: 10.1007/s10562-022-04124-x
    [26] LEE J H, JO D Y, CHOUNG J W, et al. Roles of noble metals (M = Ag, Au, Pd, Pt and Rh) on CeO2 in enhancing activity toward soot oxidation: Active oxygen species and DFT calculations[J]. J Hazard Mater,2021,403:124085. doi: 10.1016/j.jhazmat.2020.124085
    [27] ZHANG L, SPEZZATI G, MURAVEV V, et al. Improved Pd/CeO2 catalysts for low-temperature NO reduction: activation of CeO2 lattice oxygen by Fe doping[J]. ACS Catal,2021,11:5614−5627. doi: 10.1021/acscatal.1c00564
    [28] LI T, XIA D, ZHOU G, et al. Effect of the morphology on the vapor phase benzene catalytic hydrogenation over Pd/CeO2 catalyst[J]. Catal Commun,2018,112:35−38. doi: 10.1016/j.catcom.2018.04.011
    [29] HUANG X, EGGART D, QIN G, et al. Methyl radical chemistry in non-oxidative methane activation over metal single sites[J]. Nat Commun,2023,14:5716. doi: 10.1038/s41467-023-41192-y
    [30] LEE J H, LEE B J, LEE D W, et al. Synergistic effect of Cu on a Ag-loaded CeO2 catalyst for soot oxidation with improved generation of active oxygen species and reducibility[J]. Fuel,2020,275:117930. doi: 10.1016/j.fuel.2020.117930
    [31] WANG B, CHEN B, SUN Y, et al. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts[J]. Appl Catal B: Environ,2018,238:328−338. doi: 10.1016/j.apcatb.2018.07.044
    [32] MA J, LOU Y, CAI Y, et al. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2[J]. Catal Sci Technol,2018,8:2567−2577. doi: 10.1039/C8CY00208H
    [33] TU C, CHENG S. Ceria-modified palladium/activated carbon as a high-performance catalyst for crude caprolactam hydrogenation purification[J]. ACS Sustainable Chem Eng,2014,2:629−636. doi: 10.1021/sc400501w
    [34] YUE Y, LI Y, WANG T, et al. Enhancement of methanol oxidation performance over Pd/CeO2 derived from MOF and mechanism investigation via in situ studies[J]. Catal Lett,2022,152:3437−3446. doi: 10.1007/s10562-021-03901-4
    [35] LI S, ZHANG Y, SHI J, et al. Catalytic performance of palladium supported on sheaf-like ceria in the lean methane combustion[J]. Nanomaterials,2019,10:31. doi: 10.3390/nano10010031
    [36] GUO T, DU J, LI J. The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane[J]. J Mater Sci,2016,51:10917−10925. doi: 10.1007/s10853-016-0303-z
    [37] DANIELIS M, DIVINS N J, LLORCA J, et al. In situ investigation of the mechanochemically promoted Pd-Ce interaction under stoichiometric methane oxidation conditions[J]. EES Catal,2023,1:144−152. doi: 10.1039/D2EY00067A
    [38] PENG H, DONG T, YANG S, et al. Intra-crystalline mesoporous zeolite encapsulation derived thermally robust metal nanocatalyst in deep oxidation of light alkanes[J]. Nat Commun,2022,13:295. doi: 10.1038/s41467-021-27828-x
    [39] CUI X, ZHANG X, YANG Y, et al. The noble metals M (M = Pd, Ag, Au) decorated CeO2 catalysts derived from solution combustion method for efficient low-temperature CO catalytic oxidation: effects of different M loading on catalytic performances[J]. Nanotechnology,2022,33:415705. doi: 10.1088/1361-6528/ac7ed3
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  40
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 修回日期:  2023-12-11
  • 录用日期:  2023-12-11
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回