留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯氧化锆基三元低共熔溶剂的制备和氧化脱硫性能

王添渤 李秀萍 赵荣祥

王添渤, 李秀萍, 赵荣祥. 氯氧化锆基三元低共熔溶剂的制备和氧化脱硫性能[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023085
引用本文: 王添渤, 李秀萍, 赵荣祥. 氯氧化锆基三元低共熔溶剂的制备和氧化脱硫性能[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023085
WANG Tianbo, LI Xiuping, ZHAO Rongxiang. Preparation and oxidation desulfurization performance of zirconium oxychloride based ternary deep eutectic solvent[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023085
Citation: WANG Tianbo, LI Xiuping, ZHAO Rongxiang. Preparation and oxidation desulfurization performance of zirconium oxychloride based ternary deep eutectic solvent[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023085

氯氧化锆基三元低共熔溶剂的制备和氧化脱硫性能

doi: 10.19906/j.cnki.JFCT.2023085
基金项目: 辽宁省自然科学基金指导计划(2019-ZD-0064) 资助
详细信息
    通讯作者:

    E-mail: zylhzrx@126.com

  • 中图分类号: TQ028.8

Preparation and oxidation desulfurization performance of zirconium oxychloride based ternary deep eutectic solvent

Funds: The project was supported by the Mentoring Program Projects from Liaoning Natural Science Foundation (2019-ZD-0064) .
  • 摘要: 通过简单加热乙二醇,对甲苯磺酸和八水氯氧化锆混合物制备了三元低共熔溶剂。采用傅里叶变换红外光谱(FT-IR)和核磁共振氢谱(1H NMR)验证了低共熔溶剂成功合成。分别采用紫外-可见吸收光谱和旋转式黏度计对其酸性和黏度进行测试。以双氧水作为氧化剂,以合成的低共熔溶剂为萃取剂和催化剂构成萃取-氧化脱硫系统,考察了低共熔溶剂的组成、反应温度、氧硫比、剂油比以及不同硫化物等对脱硫率的影响。实验结果表明,在氯氧化锆、乙二醇和对苯甲磺酸物质的量比为1∶10∶10,反应温度50 ℃、剂油比为1∶5、氧硫比为8的最佳反应条件下,二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)、苯并噻吩(BT)模拟油的脱硫率分别为100%、92.2%、60%,且低共熔溶剂重复使用五次后脱硫率仍可达到96.2%,最后对氧化脱硫的机理进行了探讨。
  • 图  1  低共熔溶剂的合成过程

    Figure  1  Synthesis process of deep eutectic solvent

    图  2  DESs及其组成成分

    Figure  2  DESs and their composition

    图  3  不同低共熔溶剂的脱硫性能

    Figure  3  Desulfurization performance of different deep eutectic solvent

    Experimental conditions: V (DES) = 1 mL, n(ZOC)/n(TsOH)/n(EG)=1∶10∶10, Voil=5 mL, O/S=8, 50 ℃, 200 min.

    图  4  4-硝基二苯胺在不同DESs存在下的紫外-可见光谱谱图

    Figure  4  Ultraviolet visible spectra of 4-nitro diphenylamine in the presence of various DESs

    图  5  不同DESs的黏度

    Figure  5  Viscosities of Different DESs

    图  6  低共熔溶剂及其成分的红外光谱谱图

    Figure  6  Infrared spectra of deep eutectic solvents and their components

    图  7  低共熔溶剂及其成分的核磁共振谱图

    Figure  7  Nuclear magnetic resonance spectra of deep eutectic solvent and their components

    图  8  低共熔溶剂酸性对脱硫效率的影响

    Figure  8  Influence of the acidity of deep eutectic solvents on desulfurization efficiency

    Reaction conditions: VDESs/Voil=1∶5, O/S=8, 50 ℃, 200 min.

    图  9  ZOC/TsOH/EG物质的量比对脱硫效率的影响

    Figure  9  Effect of molar ratio of ethylene glycol to p-toluenesulfonic acid on desulfurization rate

    Reaction conditions: VDESs/Voil=1∶5, O/S=8, 50 ℃, 200 min.

    图  10  反应温度对脱硫效率的影响

    Figure  10  Effect of reaction temperature on desulfurization rate

    Reaction conditions: VDES/Voil=1∶5, O/S=8, 200 min.

    图  11  氧硫比对脱硫效率的影响

    Figure  11  Effect of oxygen sulfur ratio on desulfurization rate

    Reaction conditions: VDESs/Voil=1∶5, 50 ℃, 200 min.

    图  12  剂油比对脱硫效率的影响

    Figure  12  Effect of solvent oil ratio on desulfurization rate

    Reaction conditions: O/S=8, 50 ℃, 200 min.

    图  13  不同硫化物的脱除率

    Figure  13  Removal of on different sulfides

    Reaction conditions: VDESs/Voil = 1∶5, O/S = 8, 50 ℃, 200 min.

    图  14  (a) EDSs回收对脱硫率的影响;(b) 反应前后DESs的红外光谱谱图

    Figure  14  (a) Effect of EDS recovery on desulfurization rate, (b) Infrared spectra of DESs before and after the reaction

    图  15  自由基捕获实验

    Figure  15  Free radical capture experiment

    图  16  DBT在油-DESs-H2O2体系中的萃取和催化氧化过程

    Figure  16  Extraction and catalytic oxidation process of DBT in the oil-DESs-H2O2 system

    表  1  低共熔溶剂酸度的参数

    Table  1  Parameters of acidity of deep eutectic solvents

    EntrySubstanceAmaxI(HI)+H0
    14-nitrodiphenylamine4.891000
    2TsOH4.4991.68.41.04
    3ZOC/TsOH/EG4.5793.46.41.16
    4TsOH/ZOC4.5192.27.81.07
    5TsOH/EG4.4390.59.50.98
    下载: 导出CSV
  • [1] 纪桂杰, 张耀兵, 付宁宁, 等. Mn/Al-SBA-15 的制备及吸附脱硫性能[J]. 燃料化学学报,2015,43(4):449−455.

    JI Guijie, ZHANG Yaobing, FU Ningning, et al. Preparation and desulfurization performance of Mn/Al-SBA -15[J]. J Fuel Chem Technol,2015,43(4):449−455.
    [2] RAJENDRAN A, CUI T, FAN H, et al. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment[J]. J Mater Chem A,2020,8(5):2246−2285. doi: 10.1039/C9TA12555H
    [3] 周隆昌, 刘汉林, 李秀萍, 等. 直接煅烧法制备二氧化钛及其氧化脱硫性能[J]. 辽宁石油化工大学学报,2021,41(5):17−22.

    ZHOU Longchang, LIU Hanlin, LI Xiuping, et al. Preparation of titanium dioxide by direct calcination and its oxidative desulfurization properties.[J]. Liaoning Univ Pet Chem Technol,2021,41(5):17−22.
    [4] 郝阳阳, 李秀萍, 赵荣祥. MoO3/MIL-101(Cr)负载型催化剂的制备及其氧化脱硫性能[J]. 化学工程,2019,47(9):24−28. doi: 10.3969/j.issn.1005-9954.2019.09.005

    HAO Yangyang, LI Xiuping, ZHAO Rongxiang. Preparation and oxidative desulfurization performance of Moo3/mil -101(CR) supported catalyst[J]. Chem Eng,2019,47(9):24−28. doi: 10.3969/j.issn.1005-9954.2019.09.005
    [5] ZHANG K, LIU Y, TIAN S, et al. Preparation of bifunctional NiPb/ZnO-diatomite-ZSM-5 catalyst and its reactive adsorption desulfurization coupling aromatization performance in FCC gasoline upgrading process[J]. Fuel,2013,104:201−207. doi: 10.1016/j.fuel.2012.08.052
    [6] KOBAYASHI T, LI Y Y. Performance and characterization of a newly developed self-agitated anaerobic reactor with biological desulfurization[J]. Bioresour Technol,2011,102(10):5580−5588. doi: 10.1016/j.biortech.2011.01.077
    [7] AGUIAR A, RIBEIRO S, SILVA A M N, et al. An efficient eco sustainable oxidative desulfurization process using µ-oxo-bridged Fe (Ⅲ) complex of meso-tetrakis (pentafluorophenyl) porphyrin[J]. Appl Catal A: Gen,2014,478:267−274. doi: 10.1016/j.apcata.2014.04.002
    [8] HOU L, ZHAO R, LI X, et al. Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil[J]. Appl Surf Sci,2018,434:1200−1209. doi: 10.1016/j.apsusc.2017.10.076
    [9] CERUTTI M L M, HACKBARTH F V, MAASS D, et al. Copper-exchanged Y zeolites for gasoline deep-desulfurization[J]. Adsorption,2019,25(8):1595−1609. doi: 10.1007/s10450-019-00153-y
    [10] DUAN C, DONG L, LI F, et al. Room-temperature rapid synthesis of two-dimensional metal-organic framework nanosheets with tunable hierarchical porosity for enhanced adsorption desulfurization performance[J]. Ind Eng Chem Res,2020,59(42):18857−18864. doi: 10.1021/acs.iecr.0c02437
    [11] WANG Q, ZHANG T, ZHANG S, et al. Extractive desulfurization of fuels using trialkylamine-based protic ionic liquids[J]. Sep Purif Technol,2020,231:115923. doi: 10.1016/j.seppur.2019.115923
    [12] ABBASI A, FEYZI F. Oxidation/extraction desulfurization with carboxylic acid-based deep eutectic solvents[J]. Pet Sci Technol,2021,42:1−16.
    [13] MAKOS P, BOCZKAJ G. Deep eutectic solvents based highly efficient extractive desulfurization of fuels-Eco-friendly approach[J]. J Mol Liq,2019,296:111916. doi: 10.1016/j.molliq.2019.111916
    [14] BAI J, SONG Y, WANG C, et al. Engineering the electronic structure of Mo sites in Mn–Mo–O mixed-metal oxides for efficient aerobic oxidative desulfurization[J]. Energy Fuels,2021,35(15):12310−12318. doi: 10.1021/acs.energyfuels.1c01476
    [15] JIANG W, XIAO J, GAO X, et al. In situ fabrication of hollow silica confined defective molybdenum oxide for enhanced catalytic oxidative desulfurization of diesel fuels[J]. Fuel,2021,305:121470. doi: 10.1016/j.fuel.2021.121470
    [16] AGARWAL P, SHARMA D K. Comparative studies on the bio-desulfurization of crude oil with other desulfurization techniques and deep desulfurization through integrated processes[J]. Energy Fuels,2010,24(1):518−524. doi: 10.1021/ef900876j
    [17] Zhang Q, KDO V, HU X, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chem Soc Rev,2012,41(21):7108−7146. doi: 10.1039/c2cs35178a
    [18] CHANDRAN D, KHALID M, WALVEKAR R, et al. Deep eutectic solvents for extraction-desulphurization: A review[J]. J Mol Liq,2019,275:312−322. doi: 10.1016/j.molliq.2018.11.051
    [19] TAHIR S, QAZI U Y, NASEEM Z, et al. Deep eutectic solvents as alternative green solvents for the efficient desulfurization of liquid fuel: A comprehensive review[J]. Fuel,2021,305:121502. doi: 10.1016/j.fuel.2021.121502
    [20] JIANG W, ZHU K, JIA H, et al. Synthesis of task-specific ternary deep eutectic solvents for deep desulfurization via reactive extraction[J]. Chem Eng Process,2022,171:108754. doi: 10.1016/j.cep.2021.108754
    [21] YU G, JIN D, ZHANG F, et al. Oxidation-extraction desulfurization of fuel with a novel green acidic deep eutectic solvent system[J]. Fuel,2022,329:125495. doi: 10.1016/j.fuel.2022.125495
    [22] JIN D, YU G, LI X, et al. One-pot extractive and oxidative desulfurization of fuel with ternary dual-acid deep eutectic solvent[J]. Fuel,2022,329:125513. doi: 10.1016/j.fuel.2022.125513
    [23] XU L, JIA H, ZHU D, et al. Hydrogen bonding boosted oxidative desulfurization by ZnCl2/boric acid/polyethylene glycol-based ternary deep eutectic solvents[J]. J Mol Liq,2022,368:120725. doi: 10.1016/j.molliq.2022.120725
    [24] GANO Z S, MJALLI F S, AL-WAHAIBI T, et al. Solubility of thiophene and dibenzothiophene in anhydrous FeCl3-and ZnCl2-based deep eutectic solvents[J]. Ind Eng Chem Res,2014,53(16):6815−6823. doi: 10.1021/ie500466g
    [25] MAO C, ZHAO R, LI X. Propionic acid-based deep eutectic solvents: Synthesis and ultra-deep oxidative desulfurization activity[J]. RSC Adv,2017,7(67):42590−42596. doi: 10.1039/C7RA05687G
    [26] GANO Z S, MJALLI F S, AL-WAHAIBI T, et al. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design[J]. Chem Eng Process,2015,93:10−20. doi: 10.1016/j.cep.2015.04.001
    [27] RAHMATPOUR A. ZrOCl2·8H2O as a highly efficient, eco-friendly and recyclable Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles under solvent-free conditions at room temperature[J]. Appl Organomet Chem,2011,25(8):585−590. doi: 10.1002/aoc.1806
    [28] KHALILI B, MAHMOODI N, AFRAND H. Efficient synthesis of 1-Aryl-1H-tetrazols in presence of ZrOCl2. 8H2O and quantum chemical study of the products using DFT[J]. Russ J Appl Chem,2019,14(52):199−216.
    [29] HALIMEHJANI A Z, KESHAVARZI N. One-pot three-component route for the synthesis of functionalized 4H-chromenes catalyzed by ZrOCl2·8H2O in water[J]. J Heterocycl Chem,2018,55(2):522−529. doi: 10.1002/jhet.3081
    [30] SING H R, JAKHAR K, SHARMA P. ZrOCl2. 8H2O: An efficient catalyst for the synthesis of N, N’-disubstituted ureas from biuret under solvent free conditions[J]. Chem Sci,2017,6(1):135−140.
    [31] REDDY M V, REDDY G C S, JEONG Y T. Polystyrene-supported p-toluenesulfonic acid (PS/PTSA): as a highly active and reusable heterogeneous bronsted acid catalyst for the synthesis of novel 1H-indol-3-yl-4H-chromene-3-carbonitriles under neat conditions[J]. Tetrahedron Lett,2016,57(11):1289−1292. doi: 10.1016/j.tetlet.2016.02.032
    [32] LIU W, LI T, YU G, et al. One-pot oxidative desulfurization of fuels using dual-acidic deep eutectic solvents[J]. Fuel,2020,265:116967. doi: 10.1016/j.fuel.2019.116967
    [33] HAO L, WANG M, SHAN W, et al. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. J Hazard Mater,2017,339:216−222. doi: 10.1016/j.jhazmat.2017.06.050
    [34] 张红, 余肇誉, 苏远海. 微反应器耦合离子液体强化萃取过程的研究进展[J]. 化工进展,2020,39(12):4908−4918.

    ZHANG Hong, YU Zhaoyu, SU Yuanhai. Research progress in enhanced extraction process by coupling ionic liquids in microreactors[J]. Prog Chem,2020,39(12):4908−4918.
    [35] GHAEDI H, AYOUB M, SUFIAN S, et al. Thermal stability and FT-IR analysis of phosphonium-based deep eutectic solvents with different hydrogen bond donors[J]. J Mol Liq,2017,242:395−403. doi: 10.1016/j.molliq.2017.07.016
    [36] DUTTA A, GARG A, BORAH J, et al. Deep eutectic solvent mediated controlled and selective oxidation of organic sulfides and hydroxylation of arylboronic acids[J]. Curr Opin Green Sustainable Chem,2021,4:100107. doi: 10.1016/j.crgsc.2021.100107
    [37] JIANG W, JIA H, LI H, et al. Boric acid-based ternary deep eutectic solvent for extraction and oxidative desulfurization of diesel fuel[J]. Green Chem,2019,21(11):3074−3080. doi: 10.1039/C9GC01004A
    [38] ALOMAR M K, HAYYAN M, ALSAADI M A, et al. Glycerol-based deep eutectic solvents: physical properties[J]. J Mol Liq,2016,215:98−103. doi: 10.1016/j.molliq.2015.11.032
    [39] 赵岩, 李秀萍, 赵荣祥. 苯酚型低共熔溶剂中硫酸钛作为催化剂高效氧化脱硫[J]. 化工学报,2021,72(8):4391−4400.

    ZHAO Yan, LI Xiuping, ZHAO Rongxiang. High efficient oxidative desulfurization using titanium sulfate as catalyst in phenol-based low eutectic solvent[J]. J Chem Eng,2021,72(8):4391−4400.
    [40] 王韵淇, 李珊珊, 汤梦蝶, 等. OA-ZnCl2/SG催化剂的合成及其氧化脱硫性能[J]. 辽宁石油化工大学学报,2022,42(4):11−16.

    WANG Yunqi, LI Shanshan, TANG Mengdie, et al. Synthesis and oxidative desulfurization of OA-ZnCl2/SG Catalyst[J]. Liaoning Univ. Pet Chem Technol.,2022,42(4):11−16.
    [41] ZHU W, WU P, YANG L, et al. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels[J]. Chem Eng J,2013,229:250−256. doi: 10.1016/j.cej.2013.05.115
    [42] ZHANG C, PAN X, WANG F, et al. Extraction-oxidation desulfurization by pyridinium-based task-specific ionic liquids[J]. Fuel,2012,102:580−584. doi: 10.1016/j.fuel.2012.07.040
    [43] LV H, GAO J, JIANG Z, et al. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N (CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets[J]. J Catal,2006,239(2):369−375. doi: 10.1016/j.jcat.2006.01.025
    [44] SHIRAISHI Y, TACHIBANA K, HIRAI T, et al. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind Eng Chem Res,2002,41(17):4362−4375. doi: 10.1021/ie010618x
    [45] LIU H, CHEN S, LI X, et al. Preparation of DEP/2C3H4O4 DESs and its oxidative desulfurization performance[J]. Sep Sci Technol,2021,56(3):558−566. doi: 10.1080/01496395.2020.1717532
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2023-12-18
  • 录用日期:  2023-12-18
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回