留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜纳米颗粒催化剂的重构及其合成碳酸二甲酯性能研究

裴永丽 权燕红 任军

裴永丽, 权燕红, 任军. 铜纳米颗粒催化剂的重构及其合成碳酸二甲酯性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 335-342. doi: 10.19906/j.cnki.JFCT.2023086
引用本文: 裴永丽, 权燕红, 任军. 铜纳米颗粒催化剂的重构及其合成碳酸二甲酯性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 335-342. doi: 10.19906/j.cnki.JFCT.2023086
PEI Yongli, QUAN Yanhong, REN Jun. Reconstruction of copper nanoparticles catalysts and its catalytic performance for synthesis of dimethyl carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 335-342. doi: 10.19906/j.cnki.JFCT.2023086
Citation: PEI Yongli, QUAN Yanhong, REN Jun. Reconstruction of copper nanoparticles catalysts and its catalytic performance for synthesis of dimethyl carbonate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 335-342. doi: 10.19906/j.cnki.JFCT.2023086

铜纳米颗粒催化剂的重构及其合成碳酸二甲酯性能研究

doi: 10.19906/j.cnki.JFCT.2023086
基金项目: 山西省基础研究计划(202203021222330)资助
详细信息
    通讯作者:

    E-mail:quanyanhong@tyut.edu.cn

    renjun@tyut.edu.cn

  • 中图分类号: O643

Reconstruction of copper nanoparticles catalysts and its catalytic performance for synthesis of dimethyl carbonate

Funds: The project was supported by Fundamental Research Program of Shanxi Province (202203021222330).
  • 摘要: 甲醇氧化羰基化合成碳酸二甲酯(DMC)是中国重点开发的现代煤化工路线,其关键在于高性能催化剂的设计研发。本研究采用液相重构法,通过调变溶剂种类、气氛和压力制得高效铜团簇催化剂,在DMC合成反应中时空收率(STYDMC)高达3520 mg/(g·h),经过10次循环,STYDMC下降21.8%。N2吸附-脱附、XRD、TEM、STEM等表征手段表明,强还原性的CO不但可使铜纳米颗粒(~9.7 nm)部分重构为亚纳米团簇(~1.34 nm),同时有效维持了Cu0物种的存在,从而提升了催化活性和稳定性。进一步研究表明,铜重构的发生取决于气氛-金属-载体三者的相互作用,且随氧化、还原性气氛的变化呈可逆状态。
  • FIG. 3012.  FIG. 3012.

    FIG. 3012.  FIG. 3012.

    图  1  15Cu/NCNS-12-CO催化剂的(a)N2吸附-脱附曲线和(b)孔径分布

    Figure  1  (a) Nitrogen adsorption isotherms and (b) pore size distribution curves of 15Cu/NCNS-12-CO catalysts

    图  2  未经预处理及在CO、O2预处理15Cu/NCNS-12催化剂的XRD谱图

    Figure  2  The XRD patterns of 15Cu/NCNS-12 without pretreation and with pretreation under CO and O2

    图  3  (a)15Cu/NCNS-12的TEM图像和(b)15Cu/NCNS-12-CO的TEM、(c)HAADF-STEM及(d)铜团簇粒径分布

    Figure  3  (a) The TEM image of 15Cu/NCNS-12 and (b) the TEM, (c) HAADF-STEM and (d) size distribution of Cu clusters of 15Cu/NCNS-12-CO

    图  4  (a)15Cu/NCNS-12-CO的STEM图像及(b)碳,(c)氮和(d)铜元素分布

    Figure  4  (a) The STEM image of 15Cu/NCNS-12-CO and element mapping images of (b) C, (c) N and (d) Cu element

    图  5  15Cu/NCNS-12和15Cu/NCNS-12-CO催化剂的(a)DMC时空收率及(b)甲醇转化率和DMC选择性

    Figure  5  (a) Space time yield of DMC and (b) methanol conversion and DMC selectivity over 15Cu/NCNS-12 and 15Cu/NCNS-12-CO during cycle tests

    图  6  Cu0/C催化甲醇氧化羰基化合成DMC反应机理[13]

    Figure  6  Mechanism of DMC synthesis via methanol oxidative carbonylation over the Cu0/C catalysts[13]

    表  1  不同预处理条件下制备的催化剂在DMC合成中的催化性能

    Table  1  Catalytic performance of various catalysts prepared in different pretreatment conditions in the synthesis of DMC

    No. Sample Solvent Pressure/
    MPa
    Atmosphere CMeOH/
    %
    SDMC/
    %
    STYDMC/
    (mg·g−1·h−1)
    1 15Cu/NCNS-12-MeOH methanol 1 CO 6.47 96.1 3464
    2 15Cu/NCNS-12-CO water 1 CO 6.67 94.84 3520
    3 15Cu/NCNS-12-3CO water 3 CO 5.70 94.70 2995
    4 15Cu/NCNS-12-H2 water 1 H2 6.42 91.16 3261
    5 15Cu/NCNS-12-N2 water 1 N2 6.30 94.21 3307
    6 15Cu/NCNS-12-CO2 water 1 CO2 6.54 89.83 3272
    7 15Cu/NCNS-12-O2 water 1 O2 1.85 91.93 1562
    下载: 导出CSV

    表  2  15Cu/NCNS-12-CO催化剂的孔结构参数和实际铜负载量

    Table  2  Structural properties and practical Cu loading of 15Cu/NCNS-12-CO catalysts

    Sample Cu loading/% SBET/(m2·g−1) vtotal/(cm3·g−1) vmicro/(cm3·g−1) vmeso/(cm3·g−1)
    15Cu/NCNS-12-CO 17.4 594 0.71 0.16 0.55
    下载: 导出CSV

    表  3  NCNS-12的CHN元素分析

    Table  3  Carbon, hydrogen, and nitrogen element analysis of NCNS-12

    Sample C/% O/% H/% N/%
    NCNS-12 75.6 18.5 2.1 3.8
    下载: 导出CSV

    表  4  15Cu/NCNS-12、15Cu/NCNS-12-CO和CuCl催化剂的活性及稳定性评价结果

    Table  4  Catalytic results for DMC synthesis on the 15Cu/NCNS-12, 15Cu/NCNS-12-CO and CuCl catalysts

    No. Sample xMeOH/% sDMC/% sDMM/% sMF/% STYDMC/(mg·g−1·h−1)
    1 15Cu/NCNS-12 7.1 91.2 0.7 8.1 3604
    2 15Cu/NCNS-12-10run 4.3 99.3 0.7 0 2382
    3 15Cu/NNS-12-CO 6.7 94.8 1.3 3.9 3520
    4 15Cu/NCNS-12-CO-10run 5.3 92.7 1.3 6.0 2753
    5 CuCl 8.2 85.0 6.9 8.1 16677
    6 CuCl-3run 0.63 65.1 20.7 14.2 976
    下载: 导出CSV
  • [1] 孙旭东, 张蕾欣, 张博. 碳中和背景下我国煤炭行业的发展与转型研究[J]. 中国矿业,2021,30(2):1−6.

    SUN Xudong, ZHANG Leixin, ZHANG Bo. Research on the development and transformation of China's coal industry under the background of carbon neutrality[J]. Min Mag,2021,30(2):1−6.
    [2] TAN H , WANG Z , XU Z , et al. Review on the synthesis of dimethyl carbonate[J]. Catal Today,2018,316:2−12.
    [3] REN M, REN J, HAO P, et al. Influence of microwave irradiation on the structural properties of carbon-supported hollow copper nanoparticles and their effect on the synthesis of dimethyl carbonate[J]. ChemCatChem,2016,8(4):861−871.
    [4] ZHANG G, LI Z, ZHENG H, et al. Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol[J]. Appl Catal B: Environ,2015,179:95−105. doi: 10.1016/j.apcatb.2015.05.001
    [5] 王瑞玉, 李忠, 郑华艳等. 无氯Cu/AC催化剂的制备及其催化气相甲醇氧化羰基化反应性能[J]. 催化学报,2010,31(7):851−856.

    WANG Ruiyu, LI Zhong, ZHENG Huayan, et al. Preparation of chlorine-free Cu/AC catalyst and its catalytic properties for vapor phase oxidative carbonylation of methanol[J]. Chin J Catal,2010,31(7):851−856.
    [6] WANG Y, JIANG R, ZHAO X, et al. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol over activated carbon-supported copper catalysts[J]. J Nat Gas Chem,2000,9(3):205−211.
    [7] MERZA G, LÁSZLÓ B, OSZKÓ A, et al. The synthesis of dimethyl carbonate by the oxicarbonylation of methanol over Cu supported on carbon norit[J]. Catal Lett,2014,145(3):881−892.
    [8] ZHANG G, ZHAO D, YAN J, et al. The promotion and stabilization effects of surface nitrogen containing groups of CNT on Cu-Based nanoparticles in the oxidative carbonylation reaction[J]. Appl Catal A: Gen,2019,579(79):18−29.
    [9] SHI R, WANG J, ZHAO J, et al. Cu nanoparticles encapsulated with hollow carbon spheres for methanol oxidative carbonylation: Tuning of the catalytic properties by particle size control[J]. Appl Surf Sci,2018,459:707−715. doi: 10.1016/j.apsusc.2018.08.032
    [10] ZHANG G, ZHAO D, YAN J, et al. The promotion and stabilization effects of surface nitrogen containing groups of CNT on Cu-based nanoparticles in the oxidative carbonylation reaction[J]. Appl Catal A: Gen,2019,579:18−29. doi: 10.1016/j.apcata.2019.04.012
    [11] WANG J, SHI R, HAO P, et al. Influence of oxygen-containing groups of activated carbon aerogels on copper/activated carbon aerogels catalyst and synthesis of dimethyl carbonate[J]. J Mater Sci,2018,53(3):1833−1850. doi: 10.1007/s10853-017-1639-8
    [12] ZHAO J, SHI R, QUAN Y, et al. Highly efficient synthesis of dimethyl carbonate over copper catalysts supported on resin-derived carbon microspheres[J]. Chem Eng Sci.,2019,207:1060−1071. doi: 10.1016/j.ces.2019.07.039
    [13] SHI R, ZHAO J, LIU S, et al. Nitrogen-doped graphene supported copper catalysts for methanol oxidative carbonylation: enhancement of catalytic activity and stability by nitrogen species[J]. Carbon,2018,130:185−195. doi: 10.1016/j.carbon.2018.01.011
    [14] REN J, HAO P, SUN W, et al. Ordered mesoporous silica-carbon-supported copper catalyst as an efficient and stable catalyst for catalytic oxidative carbonylation[J]. Chem Eng J,2017,328:673−682. doi: 10.1016/j.cej.2017.07.101
    [15] SHI R, REN M, LI H, et al. Graphene supported cu nanoparticles as catalysts for the synthesis of dimethyl carbonate: Effect of carbon black intercalation[J]. Mol Catal,2018,445:257−268. doi: 10.1016/j.mcat.2017.12.002
    [16] PENG M, DONG C, GAO R, et al. Fully Exposed Cluster Catalyst (FECC): Toward rich surface sites and full atom utilization efficiency[J]. ACS Cent Sci,2020,7(2):262−273.
    [17] DONG C, LI Y, CHENG D, et al. Supported metal clusters: Fabrication and application in heterogeneous catalysis[J]. ACS Catal,2020,10:11011−11045. doi: 10.1021/acscatal.0c02818
    [18] HU Q, HAN Z, WANG X, et al. Facile synthesis of sub-Nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane[J]. Angew Chem,2020,59(43):19054−19059. doi: 10.1002/anie.202009277
    [19] ZHANG Z, SU J, MATIAS ANA SANZ, et al. Enhanced and stabilized hydrogen production from methanol by ultrasmall Ni nanoclusters immobilized on defect-rich h-BN nanosheets[J]. PANS,2020,117(47):29442−29452. doi: 10.1073/pnas.2015897117
    [20] HERZING A A, KIELY C J, CARLEY A F, et al. Identification of active gold nanoclusters on iron oxide supports for CO oxidation[J]. Science,2008,321(5894):1331−1335. doi: 10.1126/science.1159639
    [21] KADEN W, WU T, KUNKEL W, et al. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces[J]. Science,2009,326(5954):826−830. doi: 10.1126/science.1180297
    [22] WATANABE Y, WU X, HIRATA H, et al. Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces[J]. Catal Sci Technol,2011,1:1490−1495. doi: 10.1039/c1cy00204j
    [23] GUAN E, CISTON J, BARE S R, et al. Supported metal pair-site catalysts[J]. ACS Catal,2020,10(16):9065−9085. doi: 10.1021/acscatal.0c02000
    [24] YIN P, LUO X, MA Y, et al. Sulfur stabilizing metal nanoclusters on carbon at high temperatures[J]. Nat Commun,2021,12:3435. doi: 10.1038/S41467-021-23426-Z
    [25] PEI Y, QUAN Y, WANG X, et al. Surface reconstruction induced highly efficient N-doped carbon nanosheet supported copper cluster catalysts for dimethyl carbonate synthesis[J]. Appl Catal B: Environ,2022,300:120718. doi: 10.1016/j.apcatb.2021.120718
    [26] YU X, ZHAO J, LV R, et al. Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium-sulfur batteries[J]. J Mater Chem A,2015,3(36):18400−18405. doi: 10.1039/C5TA05374A
    [27] HUANG W, ZHANG H, HUANG Y, et al. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors[J]. Carbon N Y,2011,49(3):838−843. doi: 10.1016/j.carbon.2010.10.025
    [28] XU G, HAN J, DING B, et al. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage[J]. Green Chem,2015,17(3):1668−1674. doi: 10.1039/C4GC02185A
    [29] ZHAO Y Q, LU M, TAO P Y, et al. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors[J]. J Power Sources,2016,307:391−400. doi: 10.1016/j.jpowsour.2016.01.020
    [30] CHEN J, WANG H, WANG Z, et al. Redispersion of Mo-based catalysts and the rational design of super small-sized metallic Mo species[J]. ACS Catal,2019,9:5302−5307. doi: 10.1021/acscatal.8b04634
    [31] LI R, XU X, ZHU B, et al. In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion[J]. Nat Commun,2021,12:1406. doi: 10.1038/s41467-021-21552-2
    [32] BLIEM R, HOEVEN V, HULVA J, et al. Dual Role of CO in the Stability of Subnano Pt Clusters at the Fe3O4(001) Surface[J]. Proc Natl Acad Sci U S A,2016,113(32):8921−8926. doi: 10.1073/pnas.1605649113
    [33] NAGAI Y, DOHMAE K, IKEDA Y, et al. In situ redispersion of platinum autoexhaust catalysts: An on-line approach to increasing catalyst lifetimes?[J]. Angew Chem,2008,47(48):9303−9306. doi: 10.1002/anie.200803126
    [34] WELLER S, MONTAGNA A. O2 chemisorption at high temperatures on platinum-alumina and platinum-zeolite[J]. J Catal,1971,20(3):394−407. doi: 10.1016/0021-9517(71)90102-3
    [35] KARTUSCH C, KRUMEICH F, SAFONOVA O, et al. Redispersion of gold multiple-twinned particles during liquid-phase hydrogenation[J]. ACS Catal,2012,2(7):1394−1403. doi: 10.1021/cs300075k
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  27
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-13
  • 修回日期:  2024-01-09
  • 录用日期:  2024-01-09
  • 网络出版日期:  2024-01-22
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回