留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质热解气中含氮化合物形成与控制的研究进展

王凤超 朱虹宇 阴秀丽 徐彬 李伟振 刘华财

王凤超, 朱虹宇, 阴秀丽, 徐彬, 李伟振, 刘华财. 生物质热解气中含氮化合物形成与控制的研究进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023090
引用本文: 王凤超, 朱虹宇, 阴秀丽, 徐彬, 李伟振, 刘华财. 生物质热解气中含氮化合物形成与控制的研究进展[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023090
WANG Fengchao, ZHU Hongyu, YIN Xiuli, XU Bin, LI Weizhen, LIU Huacai. The research progress of formation and control on the N-containing compound of biomass pyrolysis gas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023090
Citation: WANG Fengchao, ZHU Hongyu, YIN Xiuli, XU Bin, LI Weizhen, LIU Huacai. The research progress of formation and control on the N-containing compound of biomass pyrolysis gas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023090

生物质热解气中含氮化合物形成与控制的研究进展

doi: 10.19906/j.cnki.JFCT.2023090
基金项目: 中国科学院战略性先导科技专项课题(XDA29010400),国家自然科学基金(52106282),吉林省与中国科学院科技合作项目(2021SYHZ0014),长春市科技发展计划项目(22SH20)和工业源生物质原料燃料化应用调配成型关键技术及示范(执行)(E339010101)资助
详细信息
    通讯作者:

    Tel: 19928370279, E-mail: liuhc@ms.giec.ac.cn

  • 中图分类号: X7

The research progress of formation and control on the N-containing compound of biomass pyrolysis gas

Funds: The project was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA29010400), National Natural Science Foundation of China (52106282), Science and Technology Co-operation Project between Jilin Province and Chinese Academy of Sciences (2021SYHZ0014),Changchun Science and Technology Development Plan Project (22SH20) and The Key Technology and Demonstration of Blending and Moulding for Fuel Applications of Biomass Feedstocks from Industrial Sources (Implementation) ( E339010101).
  • 摘要: 热解是利用生物质能的一种高效且经济的方式,但生物质热解气中的含氮化合物使热解气品质低且燃烧导致空气二次污染。本工作总结了生物质热解气中的含氮化合物研究现状,主要综述了典型生物质热失重行为,探讨了生物质热解气中含氮化合物的生成机理,分析了含氮化合物的分布状况和控制的研究进展。同时,指出了含氮化合物控制在实际应用中面临的困难挑战,进一步展望了含氮化合物控制工艺优化及经济性分析的重点研究方向,为生物质热解气净化提供理论依据和技术支持。
  • 图  1  生物质热失重行为曲线

    Figure  1  Thermogravimetric curves of biomass (a): pine sawdust (PS), cow dung (CD), kidney bean stura (KS) and bamboo (BA)[13]; (b): palm kernel shell[18]

    (with permission from Elsevier)

    图  2  生物质中纤维素、半纤维素、木质素和蛋白质的热失重(a)及红外光谱谱图(b)

    Figure  2  TG (a) and FT-IR (b) curves of cellulose, hemicellulose, lignin and protein in biomass

    (with permission from Elsevier)

    图  3  蘑菇糠(MB)和玉米秸秆(CS)热失重过程中HCN和NH3的演变曲线[29]

    Figure  3  The evolution curves of HCN and NH3 during the weight loss of mushroom bran (MB) and corn stover (CS)[29]

    (with permission from Elsevier)

    图  4  含N气体分布

    Figure  4  N-containing gas distribution

    (with permission from Elsevier)

    图  5  生物质热解燃料-N转化途径(a)[53]和藻类蛋白质热解氮转化路径(b)[55]

    Figure  5  Fuel-N conversion pathway(a)[53] of biomass pyrolysis and algal protein pyrolysis nitrogen conversion pathway(b)[55]

    (with permission from Elsevier)

    图  6  生物质热解过程中氮迁移转化路径示意图

    Figure  6  Nitrogen migration pathway in biomass pyrolysis process

    图  7  Cu-K金属椰壳活性炭脱除NO的能力(a),(b)[68]及反应机理(c),( d)[6970]

    Figure  7  Ability of Cu-K metal coconut shell activated carbon to remove NO (a), (b)[68] and reaction mechanism (c), (d)[6970]

    (with permission from Elsevier)

    图  8  金属Cu和Co促进炭脱除NO的影响[71]

    Figure  8  Effect of metal Cu and Co on promoting carbon removal of NO[71]

    (with permission from Elsevier)

    图  9  铁和钙催化剂转化NH3的循环机制[75]

    Figure  9  Cycling mechanism of iron and calcium catalysts for NH3 conversion[75]

    (with permission from Elsevier)

    图  10  大豆蛋白热解氮的迁移转化路径[76]

    Figure  10  The migration and transformation pathway of pyrolytic nitrogen of soybean protein[76]

    (with permission from Elsevier)

    表  1  部分典型生物质化学组成

    Table  1  chemical composition of partial typical biomass

    Material Proximate analysis/% Ultimate analysis/% QHHV/(MJ·kg−1) Reference
    M V A FC N C H S Oa
    Almond shell (ar) 11.0 69.6 1.30 18.10 0.50 49.38 5.23 44.76 17.92 [12]
    Pine sawdust (ar) 1.67 84.27 1.02 13.04 0.72 34.65 4.13 45.8 [13]
    Cow dung (ar) 4.35 73.71 21.40 0.54 1.53 24.39 3.08 40.2
    Kidney bean stura (ar) 4.25 82.4 1.84 11.51 1.67 38.19 6.10 54.01
    Bamboo (ar) 3.37 71.81 16.58 8.24 0.90 27.22 3.42 43.8
    Penicillin residue(db) 78.51 8.09 13.40 8.04 48.07 6.96 0.57 36.36 19.28 [14]
    Hygromycin residue(db) 73.09 14.85 11.25 10.93 50.60 7.17 0.81 30.49 19.33
    Soybean straw(db) 77.77 5.32 16.91 1.40 46.74 6.59 0.06 45.21 [15]
    Fibreboard(db) 83.56 0.30 16.13 7.49 44.79 6.16 0.01 41.55
    Cellulose (ar) 4.76 96.66 0.05 3.34 0.00 43.44 6.42 0.00 50.14 [16]
    Hemicellulose (ar) 4.32 90.81 0.12 9.19 0.01 41.76 6.72 0.00 51.51
    Lignin (ar) 5.33 65.74 16.40 34.26 0.03 61.48 5.86 3.08 29.55
    Protein (ar) 8.78 83.25 4.59 16.75 14.90 51.07 7.72 1.12 25.19
    -: no tested,a: indicated difference calculation, ar: as received,db: dry basis.
    下载: 导出CSV
  • [1] SENNECA O, CERCIELLO F. Kinetics of combustion of lignocellulosic biomass: Recent research and critical issues[J]. Fuel,2023,347:128310. doi: 10.1016/j.fuel.2023.128310
    [2] ZHANG Y, WANG J, WEI J, et al. Biomass catalytic pyrolysis over CaO microspheres: Relationship between the production of bio-oil components and CO2 capture[J]. Fuel Process Technol,2023,247:107775. doi: 10.1016/j.fuproc.2023.107775
    [3] FAIZAN M, SONG H. Critical review on catalytic biomass gasification: State-of-Art progress, technical challenges, and perspectives in future development[J]. J Clean Prod,2023,408:137224. doi: 10.1016/j.jclepro.2023.137224
    [4] YU S, YANG X, LI Q, et al. Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure[J]. Green Energy Environ,2023,8(4):1216. doi: 10.1016/j.gee.2023.01.001
    [5] LI J, LIU X, ZHU C, et al. Bacterial dynamics and functions driven by biomass wastes to promote rural toilet blackwater absorption and recycling in an ectopic fermentation system[J]. Chemosphere,2023,316:137804. doi: 10.1016/j.chemosphere.2023.137804
    [6] VUPPALADADIYAM A K, VUPPALADADIYAM S S V, AWASTHI A, et al. Biomass pyrolysis: A review on recent advancements and green hydrogen production[J]. Bioresour Technol,2022,364:128087. doi: 10.1016/j.biortech.2022.128087
    [7] HANSSON K-M, SAMUELSSON J, TULLIN C, et al. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame,2004,137(3):265−277. doi: 10.1016/j.combustflame.2004.01.005
    [8] 刘亮, 郑扬, 黄思彪, 等. 生物质热解过程中氮迁移转化机理研究进展[J]. 农业工程学报,2022,38(19):227−236.

    LIU liang, ZHENG yang, HUANG sibiao, et al. Review of nitrogen migration and transformation during biomass pyrolysis[J]. Trans Chin Soci Agric Eng,2022,38(19):227−236.
    [9] NAIK G G and DHARMADHIKARI H M. Methods for reducing NO x and PM emissions in compression ignition engine: A review[J]. Mater Today: Proc,2023,72:1406−1412. doi: 10.1016/j.matpr.2022.09.339
    [10] HERREROS J M, GEORGE P, UMAR M, et al. Enhancing selective catalytic reduction of NO x with alternative reactants/promoters[J]. Chem Eng J,2014,252:47−54. doi: 10.1016/j.cej.2014.04.095
    [11] SHAFIZADEH A, RASTEGARI H, SHAHBEIK H, et al. A critical review of the use of nanomaterials in the biomass pyrolysis process[J]. J Clean Prod,2023,400:136705. doi: 10.1016/j.jclepro.2023.136705
    [12] RASOOL T, NAJAR I, SRIVASTAVA V C, et al. Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies[J]. Bioresour Technol,2021,337:125466. doi: 10.1016/j.biortech.2021.125466
    [13] LI J, YAO X, GE J, et al. Investigation on the pyrolysis process, products characteristics and BP neural network modelling of pine sawdust, cattle dung, kidney bean stalk and bamboo[J]. Process Saf Environ Prot,2022,162:752−764. doi: 10.1016/j.psep.2022.04.055
    [14] 詹昊, 林均衡, 黄艳琴, 等. 抗生素菌渣热解N官能团变化特征及其与NO x 前驱物关系研究[J]. 燃料化学学报,2017,45(10):1219−1229.

    ZHAN hao, LIN junheng, HUANG yanqin, et al. Evolution of nitrogen functionalities and their relation to NO x precursors during pyrolysis of antibiotic mycelia wastes[J]. J Fuel Chem Technol,2017,45(10):1219−1229.
    [15] 张晓鸿, 詹昊, 阴秀丽, 等. 富氮生物质原料热解过程中NO x 前驱物释放特性研究[J]. 燃料化学学报,2016,44(12):1464−1472.

    ZHANG xiaohong, ZHAN hao, YIN xiuli, et al. Release characreristic of NO x precursors during the pyrolysis of nitrogen-rich biomass[J]. J Fuel Chem Technol,2016,44(12):1464−1472.
    [16] ZONG P, JIANG Y, TIAN Y, et al. Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil[J]. Energy Convers Manag,2020,216:112777. doi: 10.1016/j.enconman.2020.112777
    [17] SINGH R K, RUJ B, SADHUKHAN A K, et al. A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions[J]. J Energy Inst,2020,93(3):1020−1035. doi: 10.1016/j.joei.2019.09.003
    [18] MA Z, WANG J, YANG Y, et al. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches[J]. J Anal Appl Pyrolysis,2018,134:12−24. doi: 10.1016/j.jaap.2018.04.002
    [19] WANG F, GAO N, MAGDZIARZ A, et al. Co-pyrolysis of biomass and waste tires under high-pressure two-stage fixed bed reactor[J]. Bioresour Technol,2022,344:126306. doi: 10.1016/j.biortech.2021.126306
    [20] 王锐, 高明洋, 曹景沛. 碱/碱土金属催化松木屑快速热解机制[J]. 应用化学,2022,39(2):289−297.

    WANG rui, GAO mingyang, CAO jingpei. Effects of alkali/alkaline earth metals on fast pyrolysis of pine sawdust[J]. Chin J Appl Chem,2022,39(2):289−297.
    [21] GAO N, LI A, QUAN C, et al. TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust[J]. J Anal Appl Pyrolysis,2013,100:26−32. doi: 10.1016/j.jaap.2012.11.009
    [22] MA Z, YANG Y, MA Q, et al. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures[J]. J Anal Appl Pyrolysis,2017,127:350−359. doi: 10.1016/j.jaap.2017.07.015
    [23] MA Z, CHEN D, GU J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Convers Manag,2015,89:251−259. doi: 10.1016/j.enconman.2014.09.074
    [24] LIANG F, WANG R, HONGZHONG X, et al. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS[J]. Bioresour Technol,2018,256:53−60. doi: 10.1016/j.biortech.2018.01.140
    [25] LAOUGÉ Z B, MERDUN H. Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion[J]. Energy,2021,231:120895. doi: 10.1016/j.energy.2021.120895
    [26] VASSILEV S V, BAXTER D, ANDERSEN L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel,2012,94:1−33. doi: 10.1016/j.fuel.2011.09.030
    [27] 童金华, 林占熺, 林应兴. 菌草栽培平菇2种出菇方式的蛋白质营养评价[J]. 福建轻纺,2023(07):7−11+17.

    TONG jinhua, LIN zhanxi, LIN yingxing. Nutritional evaluation of proteins in two types of mushroom production by mycorrhizal cultivation of flat mushrooms[J]. Light Textile Ind Fujian,2023,(07):7−11+17.
    [28] GE L, ZHAO C, ZUO M, et al. Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose[J]. J Energy Inst,2023,107:101177. doi: 10.1016/j.joei.2023.101177
    [29] HUANG Y, SEKYERE D T, ZHANG J, et al. Fast pyrolysis behaviors of biomass with high contents of ash and nitrogen using TG-FTIR and Py-GC/MS[J]. J Anal Appl Pyrolysis,2023,170:105922. doi: 10.1016/j.jaap.2023.105922
    [30] WEI X, MA X, PENG X, et al. Comparative investigation between co-pyrolysis characteristics of protein and carbohydrate by TG-FTIR and Py-GC/MS[J]. J Anal Appl Pyrolysis,2018,135:209−218. doi: 10.1016/j.jaap.2018.08.031
    [31] REN Q, ZHAO C. NO x and N2O precursors (NH3 and HCN) from biomass pyrolysis: Interaction between amino acid and mineral matter[J]. Appl Energy,2013,112:170−174. doi: 10.1016/j.apenergy.2013.05.061
    [32] LIU X, LUO Z, YU C, et al. Release mechanism of Fuel-N into NO x and N2O precursors during pyrolysis of rice straw[J]. Energies,2018,11(3):520. doi: 10.3390/en11030520
    [33] LIU X, LUO Z, YU C, et al. Conversion mechanism of fuel-N during pyrolysis of biomass wastes[J]. Fuel,2019,246:42−50. doi: 10.1016/j.fuel.2019.02.042
    [34] YUAN S, ZHOU Z J, LI J, et al. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels,2010,24(11):6166−6171. doi: 10.1021/ef100959g
    [35] WANG Y, DONG B, FAN Y, et al. Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content[J]. Chemosphere,2019,219:383−389. doi: 10.1016/j.chemosphere.2018.11.171
    [36] BURDOVÁ H, KWOCZYNSKI Z, NEBESKÁ D, et al. The influence of diesel contaminated soil on miscanthus x giganteus biomass thermal utilization and pyrolysis products composition[J]. J Clean Prod,2023,406(5):136984.
    [37] PENG X, MA X, LIN Y, et al. Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: Kinetics and products[J]. Energy Convers Manag,2015,100:391−402. doi: 10.1016/j.enconman.2015.05.025
    [38] UZUN B B, PÜTÜN A E, PÜTÜN E. Fast pyrolysis of soybean cake: Product yields and compositions[J]. Bioresour Technol,2006,97(4):569−576. doi: 10.1016/j.biortech.2005.03.026
    [39] 陆强, 赵微, 夏源谷, 等. 生物质热解过程中氮元素迁移转化机制研究进展[J]. 燃料化学学报(中英文),2023,51(8):1047−1059+1025.

    LU qiang, ZHAO wei, XIA yuangu, et al. Research on the migration and transformation mechanism of nitrogen during biomass pyrolysis[J]. J Fuel Chem Technol,2023,51(8):1047−1059+1025.
    [40] HU J, SONG Y, LIU J, et al. Synergistic effects, gaseous products, and evolutions of NO x precursors during (co-)pyrolysis of textile dyeing sludge and bamboo residues[J]. J Hazard Mater,2021,401:123331. doi: 10.1016/j.jhazmat.2020.123331
    [41] LI D, SHI F, FU M, et al. Insight into the synergistic reaction mechanism of biomass pseudocomponents and polyamide by TG-MS and Py-GC/MS: Pyrolysis properties, reaction kinetics and N-containing species evolution[J]. Ind Crops Prod,2023,195:116428. doi: 10.1016/j.indcrop.2023.116428
    [42] ZHU X, YANG S, WANG L, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environ Pollut,2016,211:20−27. doi: 10.1016/j.envpol.2015.12.032
    [43] TIAN Y, ZHANG J, ZUO W, et al. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol,2013,47(7):3498−3505. doi: 10.1021/es304248j
    [44] LI J, WANG Z, YANG X, et al. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR[J]. J Anal Appl Pyrolysis,2007,80(1):247−253. doi: 10.1016/j.jaap.2007.03.001
    [45] CHEN W, CHEN Y, YANG H, et al. Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature[J]. Bioresour Technol,2018,249:247−253. doi: 10.1016/j.biortech.2017.10.022
    [46] LI C, ZHU L, MA Z, et al. Optimization of the nitrogen and oxygen element distribution in microalgae by ammonia torrefaction pretreatment and subsequent fast pyrolysis process for the production of N-containing chemicals[J]. Bioresour Technol,2021,321:124461. doi: 10.1016/j.biortech.2020.124461
    [47] PENG K-H, WU Q, TIPENG W, et al. Generation mechanism of NO x and N2O precursors (NH3 and HCN) from aspartic acid pyrolysis: A DFT study[J]. Int J Agric Biol Eng,2016,9:166−176.
    [48] WEI F, CAO J-P, ZHAO X-Y, et al. Nitrogen evolution during fast pyrolysis of sewage sludge under inert and reductive atmospheres[J]. Energy Fuels,2017,31(7):7191−7196. doi: 10.1021/acs.energyfuels.7b00920
    [49] TIAN K, LIU W-J, QIAN T-T, et al. Investigation on the evolution of N-Containing organic compounds during pyrolysis of sewage sludge[J]. Environ Sci Technol,2014,48(18):10888−10896. doi: 10.1021/es5022137
    [50] FONTS I, AZUARA M, LÁZARO L, et al. Gas Chromatography study of sewage sludge pyrolysis liquids obtained at different operational conditions in a fluidized bed[J]. Ind Eng Chem Res,2009,48(12):5907−5915. doi: 10.1021/ie900421a
    [51] REN Q, ZHAO C. NO x and N2O precursors from biomass pyrolysis: Nitrogen transformation from amino acid[J]. Environ Sci Technol,2012,46(7):4236−4240. doi: 10.1021/es204142e
    [52] WEI Y, TIAN H, LIU L, et al. The effects of alkali metals and alkaline earth metals on the mechanism of N-containing gases production during glutamic acid pyrolysis[J]. J Anal Appl Pyrolysis,2022,168:105787. doi: 10.1016/j.jaap.2022.105787
    [53] CHEN H, SHAN R, ZHAO F, et al. A review on the NO x precursors release during biomass pyrolysis[J]. Chem Eng J,2023,451:138979. doi: 10.1016/j.cej.2022.138979
    [54] ZHANG J, TIAN Y, CUI Y, et al. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study[J]. Bioresour Technol,2013,132:57−63. doi: 10.1016/j.biortech.2013.01.008
    [55] CHEN W, YANG H, CHEN Y, et al. Transformation of nitrogen and evolution of n-containing species during algae pyrolysis[J]. Environ Sci Technol,2017,51(11):6570−6579. doi: 10.1021/acs.est.7b00434
    [56] CHEN H, SI Y, CHEN Y, et al. NO x precursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel,2017,187:367−375. doi: 10.1016/j.fuel.2016.09.075
    [57] LI X, DONG Z, DOU J, et al. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment[J]. Fuel Process Technol,2016,148:91−98. doi: 10.1016/j.fuproc.2016.02.030
    [58] WU X Y, SONG Q, ZHAO H B, et al. Kinetic modeling of inherent mineral catalyzed NO reduction by biomass char[J]. Environ Sci Technol,2014,48(7):4184−4190. doi: 10.1021/es405521k
    [59] BAILÓN-GARCÍA E, DRWAL E, GRZYBEK T, et al. Catalysts based on carbon xerogels with high catalytic activity for the reduction of NO x at low temperatures[J]. Catal Today,2020,356:301−311. doi: 10.1016/j.cattod.2020.03.004
    [60] LI C-Z, TAN L L. Formation of NO x and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel,2000,79(15):1899−1906. doi: 10.1016/S0016-2361(00)00008-9
    [61] TIAN F-J, YU J, MCKENZIE L J, et al. Conversion of Fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: A comparative study of coal and biomass[J]. Energy Fuels,2007,21(2):517−521. doi: 10.1021/ef060415r
    [62] 詹昊, 张晓鸿, 阴秀丽, 等. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展,2016,28(12):1880−1890.

    ZHAN Hao, ZHANG Xiaohong, YIN Xiuli, et al. Formation of nitrogenous pollutants during biomass thermo-chemical conversion[J]. Prog Chem,2016,28(12):1880−1890.
    [63] 洪文鹏, 张钰, 姜海峰, 等. CO_2气氛耦合粉煤灰催化生物质热解生油特性分析[J]. 农业工程学报,2022,38(04):235−241.

    HONG Wenpeng, ZHANG Yu, JIANG Haifeng, et al. Characteristics of bio-oil generated from biomass pyrolysis catalyzed by coal fly ash under CO2 atmosphere[J]. Trans Chinese Soc Agric Eng,2022,38(04):235−241.
    [64] LI J, TIAN Y, QIAO Y, et al. Synergistic effect of hydrogen atmosphere and biochar catalyst on tar decomposition and methane-rich gas production during biomass pyrolysis[J]. Fuel,2022,330:125680. doi: 10.1016/j.fuel.2022.125680
    [65] 马承荣, 肖波, 杨家宽, 等. 生物质热解影响因素研究[J]. 环境技术,2005,(5):16−18+41.

    MA chengrong, XIAO bo, YANG jiakuan, et al. Study on the effect of operating conditions of biomass pyrolysis[J]. Environ Technol,2005,(5):16−18+41.
    [66] 刘啸天, 于洁, 孙路石. 温度与粒径对生物质热解特性影响实验研究[J]. 能源研究与管理,2022,(1):57−64.

    LIU xiaotian, YU jie, SUN lushi. Experimental study on effects of temperature and particle size on biomass pyrolysis characteristics[J]. Energy Res Manag,2022,(1):57−64.
    [67] SHU Y, ZHANG F, WANG H, et al. An experimental study of NO reduction by biomass reburning and the characterization of its pyrolysis gases[J]. Fuel,2015,139:321−327. doi: 10.1016/j.fuel.2014.08.071
    [68] XIAO R, ZHANG J-F, ZHAO L-K. An ammonia-free denitration method: Direct reduction of NO x over activated carbon promoted by Cu-K bimetals[J]. J Fuel Chem Technol,2022,50(5):628−639. doi: 10.1016/S1872-5813(21)60183-4
    [69] SHU Y, ZHANG F, WANG F, et al. Catalytic reduction of NO x by biomass-derived activated carbon supported metals[J]. Chin. J Chem Eng,2018,26(10):2077−2083. doi: 10.1016/j.cjche.2018.04.019
    [70] RAMALHO P S F, SOARES O S G P, FIGUEIREDO J L, et al. Catalytic reduction of NO over copper supported on activated carbon[J]. Catal. Today,2023,418:114044. doi: 10.1016/j.cattod.2023.114044
    [71] CATALÃO R A, MALDONADO-HÓDAR F J, FERNANDES A, et al. Reduction of NO with metal-doped carbon aerogels[J]. Appl Catal, B,2009,88(1):135−141.
    [72] LEISHMAN C, MAZZONE S, SUN Y, et al. Manganese-based catalysts supported on carbon xerogels for the selective catalytic reduction of NO x using a hollow fibre-based reactor[J]. Catal Today, 2023: 114019.
    [73] YANG S, ZHU X, WANG J, et al. Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques[J]. Bioresour Technol,2015,193:156−163. doi: 10.1016/j.biortech.2015.06.083
    [74] RUAN W, WANG Y, LIU C, et al. One-step fabrication of N-doped activated carbon by NH3 activation coupled with air oxidation for supercapacitor and CO2 capture applications[J]. J Anal Appl Pyrolysis,2022,168:105710. doi: 10.1016/j.jaap.2022.105710
    [75] XU C, DONALD J, BYAMBAJAV E, et al. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification[J]. Fuel,2010,89(8):1784−1795. doi: 10.1016/j.fuel.2010.02.014
    [76] XIAO K, GUAN R, YANG J, et al. Effects of red mud on emission control of NO x precursors during sludge pyrolysis: A protein model compound study[J]. Waste Manage,2019,85:452−463. doi: 10.1016/j.wasman.2019.01.014
    [77] GUO S, LIU T, HUI J, et al. Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis[J]. Energy,2019,189:116217. doi: 10.1016/j.energy.2019.116217
    [78] OHTSUKA Y, XU C, KONG D, et al. Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel,2004,83(6):685−692. doi: 10.1016/j.fuel.2003.05.002
    [79] REN Q, ZHAO C, WU X, et al. Effect of mineral matter on the formation of NO x precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis,2009,85(1):447−453.
    [80] 成洪达, 孟波. 双层中空纤维膜反应器的构建及氨分解制氢研究[C]. 第三届全国新能源与化工新材料学术会议暨全国能量转换与存储材料学术研讨会. 中国江苏苏州, 2018, 75.

    CHENG hongda, MENG bo. Construction of a double-layer hollow fibre membrane reactor and hydrogen production by ammonia decomposition[C]. The 3rd National Academic Conference on New Energy and New Chemical Materials and National Symposium on Energy Conversion and Storage Materials. Suzhou, Jiangsu, China, 2018, 75.)
    [81] LIU J, ZHANG X, LU Q, et al. Mechanism study on the effect of alkali metal ions on the formation of HCN as NO x precursor during coal pyrolysis[J]. J Energy Inst,2019,92(3):604−612. doi: 10.1016/j.joei.2018.03.012
    [82] FANG S, DENG Z, LIN Y, et al. Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier[J]. Energy,2021,228:120448. doi: 10.1016/j.energy.2021.120448
    [83] GU B, CAO J-P, SHAN Y-F, et al. Catalytic Fast pyrolysis of sewage sludge over HZSM-5: A study of light aromatics, coke, and nitrogen migration under different atmospheres[J]. Ind Eng Chem Res,2020,59(39):17537−17545. doi: 10.1021/acs.iecr.0c01170
    [84] 孙志向. 生物质热解过程中燃料氮转化及碱/碱土金属离子催化转化的实验研究[D]. 北京: 华北电力大学; 2014.

    SUN zhixiang. Experimental study on the fuel-nitrogen transformation and the alkali/alkali-earth metal ions catalysis during the biomass pyrolysis[D]. Beijing: North China Electric Power University; 2014.)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-01-07
  • 录用日期:  2024-01-10
  • 网络出版日期:  2024-03-02

目录

    /

    返回文章
    返回