Volume 49 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
ZHANG Jie, ZHAO Yu, WU Ai-lian, LI Jia, WANG Yu-xue. Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 198-204. doi: 10.1016/S1872-5813(21)60010-5
Citation: ZHANG Jie, ZHAO Yu, WU Ai-lian, LI Jia, WANG Yu-xue. Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 198-204. doi: 10.1016/S1872-5813(21)60010-5

Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution

doi: 10.1016/S1872-5813(21)60010-5
Funds:  The project was supported by the National Natural Science Foundation of China and Shenhua Group Corp. (U1261103)
More Information
  • Corresponding author: E-mail: Zhouyu@tyut.edu.cn
  • Received Date: 2020-09-22
  • Rev Recd Date: 2020-11-03
  • Publish Date: 2021-02-08
  • The preparation of efficient catalysts in hydrogen evolution reaction (HER) is an urgent task at present. In this work, Ni(OH)2/Ni/g-C3N4 composite catalyst was prepared through liquid phase impregnation with in-situ reduction, which was used to compose the cathode with carbon paper (CP) for the microbial electrolysis cell (MEC). With the help of SEM, TEM, XRD, XPS and electrochemical analysis techniques, the structure, properties and electrocatalytic performance in hydrogen evolution of the Ni(OH)2/Ni/g-C3N4 composite were investigated. The results indicate that the Ni(OH)2/Ni/g-C3N4 catalyst exhibits excellent electrochemical activity for hydrogen evolution in the MEC. Using the Ni(OH)2/Ni/g-C3N4 catalyst, the current density reaches 100 A/cm2 at a small overpotential of 1881 mV, with a low charge transfer resistance of 10.86 Ω and a low Tafel slope of 44.3 mV/dec, which is much superior to pure g-C3N4 catalyst and CP, and even comparable to the Pt catalyst, suggesting that the Ni(OH)2/Ni/g-C3N4 composite can be a potential candidate of HER catalyst in MEC.
  • loading
  • [1]
    BROCKWAY P E, OWEN A, BRAND-CORREA L I, HARDT L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources[J]. Nat Energy,2019,4(7):612−621. doi: 10.1038/s41560-019-0425-z
    [2]
    SHINDELL D, SMITH C J. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature,2019,573(7774):408−411. doi: 10.1038/s41586-019-1554-z
    [3]
    MOMIRLAN M, VEZIROGLU T N. Current status of hydrogen energy[J]. Renewable Sustqinable Energy Rev,2002,6(1-2):141−179. doi: 10.1016/S1364-0321(02)00004-7
    [4]
    WANG L L, MOHAMMAD A M, LIU P, ZHONG Y L, WANG Y, YANG H G, ZHAO H J. Enhanced Thermochemical H2 Production on Ca-doped lanthanum manganite perovskites through optimizing the dopant level and re-oxidation temperature[J]. Acta Metall Sin(Engllett),2018,31(4):431−439. doi: 10.1007/s40195-018-0715-7
    [5]
    KADIER A, SIMAYI Y, KALIL M S, ABDESHAHIAN P, HAMID A A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas[J]. Renewable Energy,2014,71:466−472. doi: 10.1016/j.renene.2014.05.052
    [6]
    LOGAN B E, CALL D, CHENG S, HAMELERS H V M, SLEUTELS T H J A, JEREMIASSE A W, ROZENDAL R A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environ Sci Technol,2008,42(23):8630−8640. doi: 10.1021/es801553z
    [7]
    DAI H Y, YANG H M, JIAN X, LIU X, LIANG Z H. Performance of Ag2O/Ag electrode as cathodic electron acceptor in microbial fuel cell[J]. Acta Metall Sin-Engl,2017,30(12):1243−1248. doi: 10.1007/s40195-017-0616-1
    [8]
    CHEN X T, MCCRUM I T, SCHWARZ K A, JANIK M J, KOPER M T M. Co-adsorption of cations as the cause of the apparent ph dependence of hydrogen adsorption on a stepped platinum single-crystal electrode[J]. Angew Chem Int Ed,2017,129(47):15025−15029.
    [9]
    PYUN S I, YANG T H, KIM C S. Investigation of the hydrogen evolution reaction at a 10 wt% palladium-dispersed carbon electrode using electrochemical impedance spectroscopy[J]. J Appl Electrochem,1996,26(9):953−958.
    [10]
    WANG L X, LI Y, YIN X C, WANG Y Z, SONG A L, MA Z P, QIN X J, SHAO G J. Coral-like structured Ni/C3N4 composite coating: an original catalyst for hydrogen evolution reaction in alkaline solution[J]. ACS Sust Chem Eng,2017,5(9):7993−8003. doi: 10.1021/acssuschemeng.7b01576
    [11]
    LIU X, LIANG J T, SONG X L, YANG H M, LI X J, DAI H Y, SONG Y L, LIU Y, HUA J, PAN X R, OUYANG X, LIANG Z H. Enhanced water dissociation performance of graphitic-C3N4 assembled with ZnCr-layered double hydroxide[J]. Chem Eng J,2018,337:560−566. doi: 10.1016/j.cej.2017.12.138
    [12]
    BI L L, XU D D, ZHANG L J, LIN Y H, WANG D J, XIE T F. Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending[J]. Phys Chem Chem Phys,2015,17(44):29899−29905. doi: 10.1039/C5CP05158D
    [13]
    WU S C, XU B J, LONG Y F, LUO X, ZHANG L. Oxygen-functionalized g-C3N4 layers anchored with Ni(OH)2 nanoparticles assembled onto Ni foam as binder-free outstanding electrode for supercapacitors[J]. Synth Met,2020,270:116607.
    [14]
    CAO R Y, YANG H C, ZHANG S W, XU X J. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution[J]. Appl Catal B: Environ,2019,258:117997.
    [15]
    ZHOU H, ZHANG J, ZHANG J, YAN X F, SHEN X P, YUAN A H. High-capacity room-temperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst[J]. Int J Hydrogen Energ,2015,40(36):12275−12285. doi: 10.1016/j.ijhydene.2015.05.199
    [16]
    DAI H Y, YANG H M, LIU X, JIAN X, LIANG Z H. Electricity production in microbial fuel cell subjected to different operational modes[J]. Acta Metall Sin(Engllett),2016,29(5):483−490. doi: 10.1007/s40195-016-0412-3
    [17]
    CALL D, LOGAN B E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane[J]. Environ Sci Technol,2008,42(9):3401−3406. doi: 10.1021/es8001822
    [18]
    LI F J, LIU W F, SUN Y, DING W J, CHENG S A. Enhancing hydrogen production with Ni–P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells[J]. Int J Hydrogen Energy,2016,42(6):3641−646.
    [19]
    QIU Y, XIN L, JIA F, XIE J, LI W Z. Three-dimensional phosphorus-doped graphitic-C3N4 self-assembly with NH2-functionalized carbon composite materials for enhanced oxygen reduction reaction[J]. Langmuir,2016,32(48):12569−12578. doi: 10.1021/acs.langmuir.6b02498
    [20]
    FUA Y J, LIU C A, ZHU C, WANG H B, DOU Y J, SHI W L, SHAO M W, HUANG H, LIU Y, KANG Z H. High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting[J]. Inorg Chem Front,2018,5(7):1646−1652. doi: 10.1039/C8QI00292D
    [21]
    TZVETKOV G, TSVETKOV M, SPASSOV T. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance[J]. Superlattice Microst,2018,119:122−133. doi: 10.1016/j.spmi.2018.04.048
    [22]
    LI Z W, JIANG G D, ZHANG Z H, WU Y, HAN Y H. Phosphorus-doped g-C3N4 nanosheets coated with square flake-like TiO2: Synthesis, characterization and photocatalytic performance in visible light[J]. J Mol Catal A: Chem,2016,425:340−348. doi: 10.1016/j.molcata.2016.10.020
    [23]
    MA T J, ZHANG M M, LIU H, WANG Y, PAN D H. Synthesis of novel three-dimensional mesoporous nitrogen doped graphene supported Pt nanoparticles as superior catalyst for hydrogen generation[J]. Int J Hydrogen Energy,2018,43(42):19327−19335. doi: 10.1016/j.ijhydene.2018.09.021
    [24]
    LASIA A. Mechanism and kinetics of the hydrogen evolution reaction[J]. Int J Hydrogen Energy,2019,44(36):19484−19518. doi: 10.1016/j.ijhydene.2019.05.183
    [25]
    LEDENDECKER M, KRICK CALDERÓN S, PAPP C, STEINRÜCK H P, ANTONIETTI M, SHALOM M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting[J]. Angew Chem Int Ed,2015,54(42):12361−12365. doi: 10.1002/anie.201502438
    [26]
    SHIBLI S M A, AMEEN SHA M, ANISHA B L, PONNAMMA D, SADASIVUNI K K. Effect of phosphorus on controlling and enhancing electrocatalytic performance of Ni-P-TiO2-MnO2 coatings[J]. J Electroanal Chem,2018,826:104−116. doi: 10.1016/j.jelechem.2018.08.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3048) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return