Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
ZHAO Bo, WU Kai, ZHONG Li-peng, WEI Gang, HU Zong-hua, ZHENG Wen-guang, RUAN Hui-feng, YAN Xin-ming, MA Yin, WANG Bo, JIANG Tian-lin, ZHANG Hui-yan. Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 303-310. doi: 10.1016/S1872-5813(21)60015-4
Citation: ZHAO Bo, WU Kai, ZHONG Li-peng, WEI Gang, HU Zong-hua, ZHENG Wen-guang, RUAN Hui-feng, YAN Xin-ming, MA Yin, WANG Bo, JIANG Tian-lin, ZHANG Hui-yan. Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 303-310. doi: 10.1016/S1872-5813(21)60015-4

Experimental study on catalytic pyrolysis of lignin under char and ZSM-5 for preparation of aromatics

doi: 10.1016/S1872-5813(21)60015-4
Funds:  The project was supported by the National Key Research and Development Program of China (2019YFD1100602), the National Nature Science Fund for Excellent Young Scholar (China) (51822604) and the Nature Science Fund of Jiangsu Province for Distinguished Young Scholar (China) (BK20180014)
  • Received Date: 2020-10-19
  • Rev Recd Date: 2020-11-19
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • In order to improve yield of aromatics from catalytic pyrolysis of lignin, alkali lignin was used for rapid pyrolysis experiments under a binary catalysis system of alkali lignin char and ZSM-5. Influence of catalyst ratio and pyrolysis temperature as well as pyrolysis time on aromatics quantity and mechanism of synergistic catalysis of alkali lignin char and ZSM-5 were investigated. The results show that quantity of aromatics has increased from 17 mg/g (without char) to 33 mg/g (with char addition of 1 g), which is about doubled. The optimal conditions for preparation of aromatics are under alkali lignin∶alkali lignin char∶ZSM-5=1∶1∶1 at 500℃ for 10 min. Meanwhile, the mechanism analysis shows that alkali lignin char mainly plays a role in bond breaking during pyrolysis, while ZSM-5 can act as selective aromatization to obtain higher aromatics yield, whose synergistic effects result in higher aromatic yield.
  • loading
  • [1]
    赵宏志. 锰基钙钛矿型氧化物制备及其催化热解甘蔗渣木质素性能研究[D]. 大庆: 东北石油大学, 2019.

    ZHAO Hong-zhi. Preparation of manganese based perovskite oxide and its catalytic pyrolysis Performance of Bagasse Lignin[D]. Daqing: Northeast Petroleum University, 2019.
    [2]
    JOFFRES B, LORENTZ C, VIDALIE M, LAURENTI D, QUOINEAUD A A, CHARON N, DAUDIN A, QUIGNARD A, GEANTET C. Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue[J]. Appl Catal B: Environ,2014,145:167−176.
    [3]
    黄煜乾, 吴宇婷, 郑安庆, 赵增立, 李海滨. 基于Py-GC-MS的木质素与褐煤共热解特性研究[J]. 新能源进展,2017,5(5):333−340. doi: 10.3969/j.issn.2095-560X.2017.05.002

    HUANG Yi-qian, WU Yu-ting, ZHENG An-qing, ZHAO Zeng-li, LI Hai-bin. Co-pyrolysis characteristics of lignin and lignite: Analytical Py-GC-MS study[J]. Adv New Renewable Energy,2017,5(5):333−340. doi: 10.3969/j.issn.2095-560X.2017.05.002
    [4]
    王霏, 郑云武, 郑志锋. 云南松热解及其热解产物的研究[J]. 生物质化学工程,2015,49(4):14−18. doi: 10.3969/j.issn.1673-5854.2015.04.003

    WANG Fei, ZHENG Yun-wu, ZHENG Zhi-feng. Yields and compositions of products by pyrolysis of Yunnan pine[J]. Biomass Chem Eng,2015,49(4):14−18. doi: 10.3969/j.issn.1673-5854.2015.04.003
    [5]
    王则祥, 李航, 谢文銮, 胡斌, 李凯, 陆强. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展,2020,8(1):6−14. doi: 10.3969/j.issn.2095-560X.2020.01.002

    WANG Ze-xiang, LI Hang, XIE Wen-luan, HU Bin, LI Kai, LU Qiang. Progress in basic structure, pyrolysis mechanism and characteristics of lignin[J]. Adv New Renewable Energy,2020,8(1):6−14. doi: 10.3969/j.issn.2095-560X.2020.01.002
    [6]
    李金鑫. Fe基水滑石固体碱制备过程调控及其催化解聚木质素磺酸钙性能研究[D]. 大庆: 东北石油大学, 2019.

    LI Jin-xin. Regulation on preparation process of Iron based hydrotalcites solid alkali oxides and its catalytic performance for the depolymerization of calcium lignosulfonate[D]. Daqing: Northeast Petroleum University, 2019.
    [7]
    MA Z Q, TROUSSARD E, BOKHOVEN J A V. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Appl Catal A: Gen,2012,423:130−136.
    [8]
    蒋丽群, 郑安庆, 王小波, 赵增立, 李海滨. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展,2018,6(5):402−409. doi: 10.3969/j.issn.2095-560X.2018.05.010

    JIANG Li-qun, ZHENG An-qing, WANG Xiao-bo, ZHAO Zeng-li, LI Ha-bin. Progress of biomass fast pyrolysis to produce levoglucosan and aromatics[J]. Adv New Renewable Energy,2018,6(5):402−409. doi: 10.3969/j.issn.2095-560X.2018.05.010
    [9]
    舒日洋, 徐莹, 张琦, 马隆龙, 王铁军. 木质素催化解聚的研究进展[J]. 化工学报,2016,67(11):4523−4532.

    SHU Ri-yang, XU Ying, ZHANG Qi, MA Long-long, WANG Tie-jun. Progress in catalytic depolymerization of lignin[J]. J Chem Ind Eng,2016,67(11):4523−4532.
    [10]
    郑云武. 木质生物质催化热解重整制备芳烃化合物的研究[D]. 哈尔滨: 东北林业大学, 2017.

    ZHENG Yun-wu. Study on aromatics production from catalytic pyrolysis upgraded of ligncellulose[D]. Haerbin: Northeast Foresttry University, 2017.
    [11]
    ZHANG M, RESENDE F L P, MOUTSOGLOU A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuel,2014,116:358−369.
    [12]
    杨海平, 陈汉平, 杜胜磊, 陈应泉, 王贤华, 张世红. 碱金属盐对生物质三组分热解的影响[J]. 中国电机工程学报,2009,29(17):70−75. doi: 10.3321/j.issn:0258-8013.2009.17.012

    YANG Hai-ping, CHEN Han-ping, DU Sheng-lei, CHEN Ying-quan, WANG Xian-hua, ZHANG Shi-hong. Influence of alkali salts on the pyrolysis of biomass three components[J]. Proc CSEE,2009,29(17):70−75. doi: 10.3321/j.issn:0258-8013.2009.17.012
    [13]
    刘心明. Ca/Fe强化生物质炭催化重整玉米秸秆挥发分的试验研究[D]. 包头: 内蒙古科技大学, 2019.

    LIU Xin-ming. Expeimental Study on pyrolysis of volatiles from corn straw by Ca/Fe enhanced biomass carbon catalytic reforming[D]. Baotou: Inner Mongolia University Science and Technology, 2019.
    [14]
    KUMAR G R, DUBEY M, KHAREL P, GU Z R, FAN Q H. Biochar activated by oxygen plasma for supercapacitors[J]. J Power Sources,2015,274(C):1300−1305.
    [15]
    SUN K, HUANG Q X, CHI Y, YAN J H. Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil[J]. Waste Manage,2018,81:128−137.
    [16]
    NGUYEN H K D, PHAM V V, DO H T. Preparation of Ni/biochar catalyst for hydrotreating of bio-oil from microalgae biomass[J]. Catal Lett,2016,146(11):2381−2391.
    [17]
    ZHONG C L, WEI X M. A comparative experimental study on the liquefaction of wood[J]. Energy,2004,29(11):1731−1741.
    [18]
    于树峰, 仲崇立. 农作物废弃物液化的实验研究[J]. 燃料化学学报,2005,33(2):205−210. doi: 10.3969/j.issn.0253-2409.2005.02.016

    YU Shu-feng, YU Chong-li. Experimental study on liquefaction of agricultural residue[J]. J Fuel Chem Technol,2005,33(2):205−210. doi: 10.3969/j.issn.0253-2409.2005.02.016
    [19]
    LIU S Y, XIE Q L, ZHANG B, CHENG Y L, LIUY H, CHEN P, RUAN R. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst[J]. Bioresour Technol,2016,204:164−170.
    [20]
    DICKERSON T, SORIA J. Catalytic Fast Pyrolysis: A Review[J]. Energies,2013,6(1):514−538.
    [21]
    MULLEN C A, BOATENG A A. Catalytic pyrolysis-GC/MS of lignin from several sources[J]. Fuel Process Technol,2010,91(11):1446−1458.
    [22]
    LIU Q Y, HU C S, PENG B, LIU C, LI Z W, WU K, ZHANG H Y, XIAO R. High H2/CO ratio syngas production from chemical looping co-gasification of biomass and polyethylene with CaO/Fe2O3 oxygen carrier[J]. Energy Conv Manag,2019,199:111951.
    [23]
    JACKSON M A, COMPTON D L, BOATENG A A. Screening heterogeneous catalysts for the pyrolysis of lignin[J]. J Anal Appl Pyrolysis,2008,85(1):226−230.
    [24]
    李润东, 张杨, 李秉硕, 刘合鑫, 开兴平, 烟征, 杨天华. 玉米秸秆催化液化制备生物油实验研究[J]. 燃料化学学报,2016,44(1):69−75. doi: 10.3969/j.issn.0253-2409.2016.01.010

    LI Run-dong, ZHANG Yang, LI Bing-shuo, LIU He-xin, KAI Xing-ping, YAN Zheng, YANG Tian-hua. Hydrothe rmal catalytic lique faction of corn stalk for preparation of bio-oil[J]. J Fuel Chem Technol,2016,44(1):69−75. doi: 10.3969/j.issn.0253-2409.2016.01.010
    [25]
    TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy,2011,36(5):2328−2342.
    [26]
    IOANNIDOU O, ZABANIOTOU A, ANTONAKOU E V, PAPAZISI K M, LAPPAS A A, ATHANASSIOU C. Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations[J]. Renewable Sustainable Energy Rev,2008,13(4):750−762.
    [27]
    JIN S H, LEE H W, RYU C, JEON J K, PARK Y K. Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites[J]. Energy,2015,81:41−46.
    [28]
    LEE H W, KIM Y M, JAE J, SUNG B H, JUNG S C, KIM J K, CHAI J S, PARK Y K. Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5[J]. J Anal Appl Pyrolysis,2016,122:282−288.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (420) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return