Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LI Jun-hua, XIE Jin-yin, ZHANG Dan, LIU Lin, XING Jin-juan. Effect of alkali modification to ZSM-5 zeolite on the aromatization of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 338-345. doi: 10.1016/S1872-5813(21)60016-6
Citation: LI Jun-hua, XIE Jin-yin, ZHANG Dan, LIU Lin, XING Jin-juan. Effect of alkali modification to ZSM-5 zeolite on the aromatization of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 338-345. doi: 10.1016/S1872-5813(21)60016-6

Effect of alkali modification to ZSM-5 zeolite on the aromatization of methanol

doi: 10.1016/S1872-5813(21)60016-6
Funds:  The project was supported by the National Natural Science Foundation of China (21606117) and Innovation Team Project of Liaoning Province (2018-479-14, LT2015001)
  • Received Date: 2020-10-09
  • Rev Recd Date: 2020-11-23
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • ZSM-5 zeolites were modified by desilication with sodium acetate and sodium citrate. The physicochemical properties of ZSM-5 zeolites, such as crystal structure, acid content, surface area and pore volume, were characterized by XRD, SEM, NH3-TPD, 27Al MAS NMR, pyridine adsorption infrared spectroscopy and N2 adsorption-desorption isotherms. The results indicate that pore size of the zeolite increases and mesoporous structures are formed by alkali modification, and the amount of Lewis and Brönsted acid contents decreases obviously. When the concentration of sodium acetate solution is 0.5 mol/L, the modified zeolite has a suitable B/L value for the aromatization of methanol while forming a large number of mesoporous structures. Compared with microporous ZSM-5, the catalyst life is increased from 20 h to 74 h, and the highest yield of aromatics is increased from 20.97% to 40.05%.
  • loading
  • [1]
    CONTE M, LOPEZ-SANCHEZ J A, QIAN H, MORGAN D J, RYABENKOVA Y, BARTLEY J K, CARLEY A F, TAYLOR S H, KIELY C J, KHALID K. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catal Sci Technol,2011,2(1):105−112.
    [2]
    WANG F, XIAO W, GAO L, XIAO G. The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol[J]. Catal Sci Technol,2016,6(9):3074−3086.
    [3]
    KUI S, WEIZHONG Q, NING W, CHANG S, FEI W. Fabrication of c-axis oriented ZSM-5 hollow fibers based on an in situ solid-solid transformation mechanism[J]. Jam Chem Soc,2013,135(41):15322−15325.
    [4]
    梁晓彤, 范晶晶. ZSM-5分子筛改性方法概述[J]. 科技风,2019,(34):162.

    LIANG, Xiao-tong, FAN Jing-jing. Overview of modification methods of ZSM-5 molecular sieve[J]. Technol Wind,2019,(34):162.
    [5]
    LI J, CHAO H, KAI T, HAO X, ZHU Z, HU Z H. CO2 atmosphere-enhanced methanol aromatization over the NiO-HZSM-5 catalyst[J]. RSC Adv,2014,4(84):44377−44385.
    [6]
    BAKARE I A, MURAZA O, YAMANI Z H, YOSHIOKA M, YOKOI T. Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides[J]. Catal Sci Technol,2016,6(21):7852−7859.
    [7]
    LI G, VASSILEV P, SANCHEZ-SANCHEZ M, LERCHER J A, HENSEN E J M, PIDKO E A. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol[J]. J Catal,2016,338:305−312.
    [8]
    YOUSHENG T, HIROFUMI K, KATSUMI K. ZSM-5 monolith of uniform mesoporous channels[J]. J Am Chem Soc,2003,125(20):6044−6045.
    [9]
    KAUR B, TUMMA M, SRIVASTAVA R. Transition-metal-exchanged nanocrystalline ZSM-5 and metal-oxide-incorporated SBA-15 catalyzed reduction of nitroaromatics[J]. Ind Eng Chem Res,2013,52(33):11479−11487.
    [10]
    AVELINO C, DÍAZ-CABANAS M J, JOAQUíN M T, FERNANDO R, JORDI R. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst[J]. Nature,2002,418(6897):514−517.
    [11]
    杨福文, 张波. 一种ZSM-5分子筛的环保合成方法[J]. 化工管理,2020,(16):83−84. doi: 10.3969/j.issn.1008-4800.2020.16.049

    Yang Fu-wen, ZHANG Bo. An environmentally friendly synthesis method of ZSM-5 molecular sieve[J]. Chem Ind Manage,2020,(16):83−84. doi: 10.3969/j.issn.1008-4800.2020.16.049
    [12]
    PAILLAUD J L, HARBUZARU B, PATARIN J, BATS N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings[J]. Science,2004,304(5673):990−992.
    [13]
    BJØRGEN, MORTEN, AKYALCIN, OLSBYE, UN NI, BENARD, SANDRINE, KOLBOE, STEIN. Methanol to hydrocarbons over large cavity zeolites: Toward a unified description of catalyst deactivation and the reaction mechanism[J]. J Catal,2010,275(1):170−180.
    [14]
    黄世英, 熊晓云. 多级孔分子筛的合成研究进展[J]. 工业催化,2019,27(5):16−21. doi: 10.3969/j.issn.1008-1143.2019.05.004

    HUANG Shi-ying, XIONG Xiao-yun. Advances in synthesis of multistage pore molecular sieves[J]. Ind Catal,2019,27(5):16−21. doi: 10.3969/j.issn.1008-1143.2019.05.004
    [15]
    李晶, 王迪. 介孔MCM-41的合成及改性研究进展[J]. 四川化工,2019,22(2):12−15. doi: 10.3969/j.issn.1672-4887.2019.02.005

    LI Jing, WANG Di. Progress in synthesis and modification of mesoporous MCM-41[J]. Sichuan Chem Ind,2019,22(2):12−15. doi: 10.3969/j.issn.1672-4887.2019.02.005
    [16]
    LIU B, CHAO L, REN Y, TAN Y, XI H, YU Q. Direct synthesis of mesoporous ZSM-5 zeolite by a dual-functional surfactant approach[J]. Chem Eng J,2012,210(6):96−102.
    [17]
    LI J, MIAO P, LI Z, HE T, HAN D, WU J, WANG Z, WU J, LI J, MIAO P. Hydrothermal synthesis of nanocrystalline H[Fe, Al]ZSM-5 zeolites for conversion of methanol to gasoline[J]. Energ Convers Manage,2015,93:259−266.
    [18]
    EGEBLAD K, CHRISTENSEN C H, KUSTOVA M, CHRISTENSEN C H. Templating mesoporous zeolites[J]. Chem Mater,2008,20(3):946−960.
    [19]
    JAVIER P R, CHRISTENSEN C H, KRESTEN E, CHRISTENSEN C H, GROEN J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev,2008,37(11):2530−2542.
    [20]
    BOISEN A, SCHMIDT I, CARLSSON A, DAHL S, BRORSON M, JACOBSEN C J. TEM stereo-imaging of mesoporous zeolite single crystals[J]. Chem Commun,2003,9(8):958−959.
    [21]
    WEI F, SNYDER M A, SANDEEP K, PYUNG-SOO L, WON CHEOL Y, MCCORMICK A V, PENN R, L EE, ANDREAS S, MICHAEL T. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity[J]. Nat Mater,2008,7(12):984−991.
    [22]
    ZHU H, LIU Z, WANG Y, KONG D, XIE Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite1 crystal[J]. Chem Mater,2008,20(3):1134−1139.
    [23]
    YAO J, YI H, WANG H. Controlling zeolite structures and morphologies using polymer networks[J]. J Mater Chem,2010,20(44):9827−9831.
    [24]
    SERRANO D P, ESCOLA J M, PIZARRO P. Synthesis strategies in the search for hierarchical zeolites[J]. Chem Soc Rev,2013,42(9):4004−4035.
    [25]
    LYNCH J, RAATZ F, DUFRESNE P. Characterization of the textural properties of dealuminated HY forms[J]. Zeolites,1987,7(4):333−340.
    [26]
    GROEN J C and MOULIJN J A. Desilication: On the controlled generation of mesoporosity in MFI zeolites[J]. J Mater Chem,2006,16(22):2121−2131.
    [27]
    VERBOEKEND D, MITCHELL S, MILINA M, GROEN J C, PEREZ-RAMIREZ J. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication[J]. J Phys Chem C,2011,115(29):14193−14203.
    [28]
    赵玉琦, 张弦, 刘晓飞, 郭雅新, 董若楠和常四良. 碱改性法制备微孔-介孔ZSM-5分子筛的研究进展[J]. 中国石油和化工标准与质量,2017,37(15):104−106. doi: 10.3969/j.issn.1673-4076.2017.15.053

    ZHAO Yu-qi, ZHANG Xuan, LIU Xiao-fei, GUO Ya-xin, DONG Ruo-nan, CHANG Si-liang. Preparation of microporous mesoporous ZSM-5 zeolite by alkali modification[J]. China Pet Chem Ind Standard Qual,2017,37(15):104−106. doi: 10.3969/j.issn.1673-4076.2017.15.053
    [29]
    SU L, LIN L, ZHUANG J, WANG H, LI Y, SHEN W, XU Y, BAO X. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts[J]. Catal Lett,2003,91(3/4):155−167.
    [30]
    魏民, 孔飞飞, 丁越野和刘冬梅. 碱处理法制备微介孔ZSM-5及其加氢脱硫性能的研究[J]. 石油炼制与化工,2015,46(10):61−66. doi: 10.3969/j.issn.1005-2399.2015.10.012

    Wei Min, KONG Fei-fei, DING Yue-ye, LIU Dong-mei. Preparation of micromesoporous ZSM-5 by alkali treatment and its hydrodesulfurization performance[J]. Pet Ref Chem Ind,2015,46(10):61−66. doi: 10.3969/j.issn.1005-2399.2015.10.012
    [31]
    马健, 刘冬梅, 魏民, 王海彦, 王坤, 张晶卫. Na2CO3溶液处理对Ni-Mo/HZSM-5分子筛硫醚化催化性能的影响[J]. 燃料化学学报,2014,42(9):1128−1134. doi: 10.3969/j.issn.0253-2409.2014.09.014

    MA Jian, LIU Dong-mei, WEI Min, WANG Hai-yan, WANG Kun, ZHANG Jing-wei. Effect of Na2CO3 solution treatment on the catalytic performance of thioetherification of Ni-MO /HZSM-5 zeolite[J]. J Fuel Chem Technol,2014,42(9):1128−1134. doi: 10.3969/j.issn.0253-2409.2014.09.014
    [32]
    赵岑, 刘冬梅, 魏民, 孙志岩, 王海彦. 多级孔ZSM-5分子筛的制备及催化噻吩烷基化性能研究[J]. 燃料化学学报,2013,41(10):1256−1261.

    ZHAO Cen, LIU Dong-mei, WEI Min, SUN Zhi-yan, WANG Hai-yan. Preparation and catalytic alkylation of thiophene using multistage pore ZSM-5 zeolite[J]. J Fuel Chem Tehnol,2013,41(10):1256−1261.
    [33]
    GROEN J C, MOULIJN J A, PÉREZ-RAMíREZ J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination[J]. Microporous Mesoporous Mater,2005,87(2):153−161.
    [34]
    GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMíREZ J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids Surfaces A,2004,241(1):53−58.
    [35]
    FREUDE D, HAASE J (1993). Quadrupole effects in solid-state nuclear magnetic resonance[J]. Springer Berlin,1993,:74−79.
    [36]
    BRUNNER E, ERNST H, FREUDE D, FRöHLICH T, HUNGER M, PFEIFER H. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5[J]. J Catal,1991,22(1):34−41.
    [37]
    SONG Y Q, FENG Y L, LIU F, KANG C L, ZHOU X L, XU L Y, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. J Mol Catal A: Chem,2009,310(1):130−137.
    [38]
    LIU B, CHAI Y, LI Y, WANG A, LIU Y, LIU C. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. App Catal A: Gen,2014,471(10):70−79.
    [39]
    孙巾茹, 王颖, 马强, 李滨, 赵玉, 田雨, 王虹, 迟姚玲, 李翠清, 宋永吉. Ag(x)/ZSM-5催化剂的CH4-SCR脱硝性能[J]. 燃料化学学报,2020,48(2):197−204. doi: 10.3969/j.issn.0253-2409.2020.02.009

    SUN Jin-ru, WANG Ying, MA Qiang, LI Bin, ZHAO Yu, TIAN Yu, WANG Hong, CHI Yao-ling, LI Cui-qing, SONG Yong-ji. Denitrification performance of Ag(X)/ZSM-5 catalyst with CH4-SCR[J]. J Fuel Chem Technol,2020,48(2):197−204. doi: 10.3969/j.issn.0253-2409.2020.02.009
    [40]
    FELICZAK-GUZIKA. Hierarchical zeolites: Synthesis and catalytic properties[J]. Microporous Mesoporous Mater,2009,259(15):126−130.
    [41]
    HOLM M S, TAARNING E, EGEBLAD K, CHRISTENSEN C H. Catalysis with hierarchical zeolites[J]. Catal Today,2011,168(1):3−16.
    [42]
    高玥, 黄星亮, 字琴, 彭文宇, 张鑫, 田洪锋, 董乐, 刘宗俨. NaOH改性ZSM-5分子筛在苯、甲醇烷基化反应中的应用[J]. 燃料化学学报,2019,47(9):1104−1110. doi: 10.3969/j.issn.0253-2409.2019.09.010

    GAO Yue, HUANG Xing-liang, ZI Qin, PENG Wen-yu, ZHANG Xin, TIAN Hong-feng, Dong Le, Liu Zong-yan. Application of NaOH modified ZSM-5 molecular sieve in benzene and methanol alkylation[J]. J Fuel Chem Technol,2019,47(9):1104−1110. doi: 10.3969/j.issn.0253-2409.2019.09.010
    [43]
    孙逊. 多级孔ZSM-5分子筛用于催化甲醇芳构化反应性能研究[D]. 上海: 上海师范大学, 2018.

    SUN Xun. Multistage pore ZSM-5 molecular sieve for catalytic aromatization of methanol[D]. Shanghai: Shaihai: Normal University, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (308) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return