Volume 49 Issue 5
May  2021
Turn off MathJax
Article Contents
ZHANG Bei, FAN Jun-jie, DENG Jia-xiao, REN Zhi-yuan. Effect of Na on the migration and release of pyridine nitrogen during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 641-647. doi: 10.1016/S1872-5813(21)60018-X
Citation: ZHANG Bei, FAN Jun-jie, DENG Jia-xiao, REN Zhi-yuan. Effect of Na on the migration and release of pyridine nitrogen during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 641-647. doi: 10.1016/S1872-5813(21)60018-X

Effect of Na on the migration and release of pyridine nitrogen during coal pyrolysis

doi: 10.1016/S1872-5813(21)60018-X
Funds:  The project was supported by the National Key Research and Development Plan (2016YFB0600304)
  • Received Date: 2020-10-14
  • Rev Recd Date: 2020-11-30
  • Available Online: 2021-03-14
  • Publish Date: 2021-05-28
  • Based on density functional theory (DFT) and transition state theory, the effect of alkali metal Na on the formation mechanism and path of NH3 and HCN during coal pyrolysis was studied at the M06-2X/6-311G(d) level. The seven membered ring containing pyridine was selected as the coal model, and the adsorption structure of Na on the coal surface was used as the coal model containing Na. The results show that the presence of Na significantly strengthens the bonding between N and C atoms in pyridine ring, which makes the stripping of N atom from benzene ring requires higher activation energy, thus inhibiting the formation of HCN. However, Na can improve the surface activity of coal, and the energy barrier of NH3 formation rate determination step in the presence of Na is 271.35 kJ/mol lower than that in the absence of Na, which significantly promotes the formation of NH3.
  • loading
  • [1]
    BP. BP Statistical Review of World Energy 2020[Z].
    [2]
    CHEN Z, YUAN S, LIANG Q, WANG F, YU Z. Distribution of HCN, NH3, NO and N2 in an entrained flow gasifier[J]. Chem Eng J,2009,148(2/3):312−318.
    [3]
    TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX: Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J]. Fuel,2006,85(10/11):1411−1417.
    [4]
    TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, CHIBA T, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VII: Pyrolysis and gasification of cane trash with steam[J]. Fuel,2005,84(4):371−376. doi: 10.1016/j.fuel.2004.09.018
    [5]
    CHANG L P, XIE Z L, XIE K C, PRATT K C, HAYASHI J, CHIBA T, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI: Effects of gas atmosphere on the formation of NH3 and HCN[J]. Fuel,2003,82(10):1159−1166. doi: 10.1016/S0016-2361(03)00024-3
    [6]
    HANSSON K M, SAMUELSSON J, TULLIN C, ÅMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame,2004,137:265−277. doi: 10.1016/j.combustflame.2004.01.005
    [7]
    WOOD B J, SANCIER K M. The mechanism of the catalytic gasification of coal char: A critical review[J]. Catal Rev Sci Eng,1984,26:233−279. doi: 10.1080/01614948408078065
    [8]
    TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J] Fuel, 2006, 85: 1411−1417.
    [9]
    ZHANG Q, LIU H, LU G, YI L L, HU H Y, CHI H T, YAO H. Mechanism of conditioner CaO on NOx precursors evolution during sludge steam gasification[J]. Proc Combust Inst,2017,36:4003−4010. doi: 10.1016/j.proci.2016.09.006
    [10]
    LIU J, ZHANG X L, LU Q, SHAW A, HU B, JIANG X Y, DONG C Q. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. J Energy Inst,2019,92:604−612. doi: 10.1016/j.joei.2018.03.012
    [11]
    王永刚, 郑盼盼, 杨萨莎, 张书, 白艳萍, 贾晓璐. 酸洗脱矿对胜利褐煤热解过程中N迁移转化的影响[J]. 燃料化学学报,2004,42(5):519−526.

    WANG Yong-gang, ZHENG Pan-pan, YANG Sa-sha, BAI Yan-ping, JIA Xiao-lu. Influence of demineralization using acid wash on N migration and transformation during pyrolysis of Shengli brown coal[J]. J Fuel Chem Technol,2004,42(5):519−526.
    [12]
    YASUO O, WU Z H, EDWARD F. Effect of alkali and alkaline earth metals on nitrogen release during temperature pro-grammed pyrolysis of coal[J]. Fuel,1997,76(14/15):1361−1367.
    [13]
    郑盼盼, 王永刚, 武欣, 刘宸, 白艳萍, 林雄超. 载Na胜利褐煤热解过程中氮的迁移转化[J]. 燃料化学学报,2017,45(4):418−426. doi: 10.3969/j.issn.0253-2409.2017.04.005

    ZHENG Pan-pan, WANG Yong-gang, WU Xin, LIU Chen, BAI Yan-ping, LIN Xiong-chao. Transformation of nitrogen during pyrolysis of Na-loaded Shengli brown coal[J]. J Fuel Chem Technol,2017,45(4):418−426. doi: 10.3969/j.issn.0253-2409.2017.04.005
    [14]
    ZHANG X X, LV X X, WU H X, XIE M, LIN R Y, ZHOU Z J. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol,2020,48(6):663−673. doi: 10.1016/S1872-5813(20)30050-5
    [15]
    刘吉, 陆强, 蒋晓燕, 胡斌, 董长青, 杨勇平. 碱金属离子对吡咯热解生成NOx前驱物HCN机理的影响[J]. 煤炭学报,2018,43(9):2633−2638.

    LIU Ji, LU Qiang, JIANG Xiao-yan, HU Bin, DONG Chang-qing, YANG Yong-ping. Effect of alkali metal ions on the formation mechanism of HCN as NOx precursor during pyrrole pyrolysis[J]. J China Coal Soc,2018,43(9):2633−2638.
    [16]
    MIN J X, WANG N B, WANG M F, HUO P J, LIU D. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms[J]. Int J Coal Sci Technol,2015,2(3):223−231. doi: 10.1007/s40789-015-0083-0
    [17]
    LI H B, YU Y, HAN M F, LEI Z. Simulation of coal char gasification using O2/CO2[J]. Int J Coal Sci Technol,2014,1(1):81−87. doi: 10.1007/s40789-014-0010-9
    [18]
    陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁. 含氮煤焦还原NO反应路径研究[J]. 燃料化学学报,2019,47(3):279−286.

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen containing char[J]. J Fuel Chem Technol,2019,47(3):279−286.
    [19]
    MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion[J]. J Phys Chem A,2000,104(36):8409−8417. doi: 10.1021/jp001045p
    [20]
    张守玉, 陈川, 施大钟, 吕俊复, 王健, 董爱霞. 高钠煤燃烧利用现状[J]. 中国电机工程学报,2013,33(5):1−12.

    ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LV Jun-fu, WANG Jian, DONG Ai-xia. Situation of combustion utilization of high sodium coal[J]. Proc CSEE,2013,33(5):1−12.
    [21]
    宋维健, 宋国良, 齐晓宾, 吕清刚. 准东高钠煤气化过程中 Na 的迁移转化规律[J]. 煤炭学报,2016,41(2):490−496.

    SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LV Qing-gang. Sodium transformation law of Zhundong coal during gasification[J]. J China Coal Soc,2016,41(2):490−496.
    [22]
    魏砾宏, 崔保崇, 陈勇, 杨天华, 郭良振. 高碱煤钠赋存形态及其燃烧过程中迁移转化的研究进展[J]. 燃料化学学报,2019,47(8):897−906. doi: 10.3969/j.issn.0253-2409.2019.08.001

    WEI Li-hong, CUI Bao-chong, CHEN Yong, YANG Tian-hua, GUO Liang-zhen. Occurrence of sodium in high alkali coal and its transformation during combustion[J]. J Fuel Chem Technol,2019,47(8):897−906. doi: 10.3969/j.issn.0253-2409.2019.08.001
    [23]
    ZHAO D, LIU H, SUN C, XU L, CAO Q. DFT study of the catalytic effect of Na on the gasification of carbon CO2[J]. Combust Flame,2018,197:471−486. doi: 10.1016/j.combustflame.2018.09.002
    [24]
    高正阳, 刘晓硕, 李昂, 马传志, 李祥, 杨建蒙. 电厂烟气中 SO2 对活性炭吸附单质铅(Pb)的影响机理[J]. 环境科学学报,2019,39(11):3732−3739.

    GAO Zheng-yang, LIU Xiao-shuo, LI Ang, MA Chuan-zhi, LI Xiang, YANG Jian-meng. The effect of SO2 on adsorption of element lead toward activated carbon in coal fired power plants[J]. Acta Sci Circums,2019,39(11):3732−3739.
    [25]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R. Gaussian 09, revision e. 01. Wallingford CT: Gaussian, Inc, 2013.
    [26]
    ZHAO Y, TRUHLAR D G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical kinetics, Noncovalent interactions, Excited states, and Transition elements: Two new Functionals and Systematic Testing of Four M06-class Functionals and 12 other Functionals[J]. Theor Chem Acc,2008,120:215−241. doi: 10.1007/s00214-007-0310-x
    [27]
    HOHENSTEIN E G, CHILL S T, SHERRILL C D. Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules[J]. J Chem Theory Comput,2008,4(12):1996−2000. doi: 10.1021/ct800308k
    [28]
    UMADEVI D, SASTRY G N. Molecular and ionic interaction with graphene nanoflakes: A computational investigation of CO2, H2O, Li, Mg, Li+, and Mg2+ interaction with polycyclic aromatic hydrocarbons[J]. J Phys Chem C,2011,115:9656−9667. doi: 10.1021/jp201578p
    [29]
    朱廷钰, 汤忠, 黄戒介, 张建民, 汪洋. 煤温和气化特性的热重研究[J]. 燃料化学学报,1999,27(5):420−423.

    ZHU Ting-yu, TANG Zhong, HUANG Jie-jie, ZHANG Jian-min, WANG Yang. Thermo-gravimetric study of coal mild gasification[J]. J Fuel Chem Technol,1999,27(5):420−423.
    [30]
    ZHANG Z Y. Study on influence mechanism of sodium on Zhundong coal pyrolysis and gasification[D]. Beijing: North China Electric Power University, 2017.
    [31]
    秦玲丽, 崔银萍, 徐明艳, 常丽萍. 煤氮催化转化研究中的主要影响因素分析[J]. 现代化工,2006,26(2):382−385.

    QIN Ling-li, CUI Yin-ping, XU Ming-yan, CHANG Li-ping. Main influencing factors in the research on catalytic conversion of coal-nitrogen[J]. Mod Chem Ind,2006,26(2):382−385.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (616) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return