Volume 49 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
XU Feng, WANG Yu-ming, LI Fan, NIE Xin-yu, ZHU Li-hua. Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 366-372. doi: 10.1016/S1872-5813(21)60022-1
Citation: XU Feng, WANG Yu-ming, LI Fan, NIE Xin-yu, ZHU Li-hua. Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 366-372. doi: 10.1016/S1872-5813(21)60022-1

Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge

doi: 10.1016/S1872-5813(21)60022-1
Funds:  The project was supported by the National Natural Science Foundation of China (51874126) and Natural Science Foundation of Heilongjiang Province of China (E2018053)
More Information
  • Corresponding author: Tel: 0451-88036445,E-mail: xufeng79_79@163.com
  • Received Date: 2020-11-02
  • Rev Recd Date: 2020-12-09
  • Available Online: 2021-03-19
  • Publish Date: 2021-03-19
  • The steam reforming and partial oxidation of methane to produce hydrogen under dielectric barrier discharge were conducted in the CH4-O2-N2-H2O reaction system; the effects of H2O/CH4 molar ratio, O2/N2 molar ratio, total gas flow, discharge voltage and discharge frequency on the hydrogen production were investigated and the reaction mechanism was analyzed on the basis of the in-situ diagnostic emission spectroscopy. The results indicate that the conversion of methane and the yield of hydrogen increase with the increase of H2O/CH4 molar ratio, O2/N2 molar ratio, and discharge voltage, but decrease with the increase of the total gas flow rate and show an volcano-shape trend with the increase of discharge frequency (peaked at 9.8 kHz). Under the conditions with an H2O/CH4 molar ratio of 1.82, O2/N2 molar ratio of 2.1, total flow rate of 136 mL/min, discharge voltage of 18.6 kV and discharge frequency of 9.8 kHz, in particular, the conversion of methane and the yield of hydrogen reach 47.45% and 21.33%, respectively. During the reaction, methane and water vapor may dissociate by the action of high energy electrons to generate CHx ·, H·, OH·, O· and other free radicals and hydrogen is then produced through the collision between the free radicals. H· may come from the electronic dissociation of CH4 as well as the dissociation of OH· formed primarily from the water vapor dissociation. The partial oxidation of methane is mainly manifested by the oxidation of CH2· with O·, where O· is produced by the electronic dissociation of O2 as well as the further dissociation of OH·.
  • loading
  • [1]
    KHALIFEH O, MOSALLANEJAD A, TAGHVAEI H, RAHIMPOUR M R, SHARIATI A. Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes, voltages and frequencies[J]. Appl Energy,2016,169:585−596. doi: 10.1016/j.apenergy.2016.02.017
    [2]
    WANG W, LI J, WEI X, DING J, FENG H, YAN J, YANG J. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method[J]. Appl Energy,2015,142:221−228. doi: 10.1016/j.apenergy.2014.12.072
    [3]
    ALEKNAVICIUTE I, KARAYIANNIS T G, COLLINS M W, XANTHOS C. Methane decomposition under a corona discharge to generate COx-free hydrogen[J] Energy, 2013, 59(15): 432-439.
    [4]
    NISHIDA Y, CHIANG H C, CHEN T C, CHENG C Z. Efficient production of hydrogen by DBD type plasma discharges[J]. IEEE Trans Plasma Sci,2014,42(12):3765−3771. doi: 10.1109/TPS.2014.2354695
    [5]
    DU C M, MO J M, TANG J, HUANG D W, MO Z X, WANG Q K, MA S Z, CHEN Z J. Plasma reforming of bio-ethanol for hydrogen rich gas production[J]. Appl Energy,2014,133:70−79. doi: 10.1016/j.apenergy.2014.07.088
    [6]
    JASINSKI M, CZYLKOWSKI D, HRYCAK B, DORS M, MIZERACZYK J. Atmospheric pressure microwave plasma source for hydrogen production[J]. Int J Hydrogen Energy,2013,38(26):11473−11483. doi: 10.1016/j.ijhydene.2013.05.105
    [7]
    TAGHVAEI H, JAHANMIRI A, RAHIMPOUR M R, MOHAMADZADEHSHIRAZI M, HOOSHAMND N. Hydrogen production through plasma cracking of hydrocarbons: Effect of carrier gas and hydrocarbon type[J]. Chem Eng J,2013,226:384−392. doi: 10.1016/j.cej.2013.04.035
    [8]
    NAIR S A, NOZAKI T O, OKAZAKI K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor Investigation of gas phase mechanism[J]. Chem Eng J,2007,132(1/3):85−95.
    [9]
    陈亮, 鲁群苟, 胡辉, 贺李浩, 汪雨轩. 直流电晕等离子体重整甲烷二氧化碳制取合成气的研究[J]. 应用化工,2018,47(9):1947−1951. doi: 10.3969/j.issn.1671-3206.2018.09.036

    CHEN Liang, LU Qun-gou, HU Hui, HE Li-hao, WANG Yu-xuan. Study on CO2 reforming of CH4 to make synthesis gas by DC corona plasma[J]. Appl Chem Ind,2018,47(9):1947−1951. doi: 10.3969/j.issn.1671-3206.2018.09.036
    [10]
    GHANBARI M, BINAZADEH M, ZAFARNAK S, TAGHVAEI H, RAHIMPOUR M R. Hydrogen production via catalytic pulsed plasma conversion of methane: Effect of Ni-K2O/Al2O3loading, applied voltage, and argon flow rate[J]. Int J Hydrogen Energy,2020,45(27):13899−13910. doi: 10.1016/j.ijhydene.2020.03.099
    [11]
    李凡, 朱丽华, 徐锋. 介质阻挡放电等离子体甲烷/水蒸气重整制氢[J]. 燃料化学学报,2019,47(5):566−573. doi: 10.3969/j.issn.0253-2409.2019.05.007

    LI Fan, ZHU Li-hua, XU Feng. Hydrogen production from methane/steam by dielectric barrier discharge plasma reforming[J]. J Fuel Chem Technol,2019,47(5):566−573. doi: 10.3969/j.issn.0253-2409.2019.05.007
    [12]
    SHAREEI M, TAGHVAEI H, AZIMI A, SHAHBAZI A, MIRZAEI M. Catalytic DBD plasma reactor for low temperature partial oxidation of methane: Maximization of synthesis gas and minimization of CO2[J]. Int J Hydrogen Energy,2019,44(60):31873−31883. doi: 10.1016/j.ijhydene.2019.10.120
    [13]
    朱凤森, 张浩, 严建华, 倪明江, 李晓东. 磁旋滑动弧促进甲烷部分氧化重整制氢[J]. 高电压技术,2017,43(6):1893−1900.

    ZHU Feng-sen, ZHANG Hao, YAN Jian-hua, NI Ming-jiang, LI Xiao-dong. Rotating Gliding Arc Assisted Methane Partial Oxidation for Hydrogen Production[J]. High Voltage Eng,2017,43(6):1893−1900.
    [14]
    王皓, 宋凌珺, 李兴虎, 岳丽蒙. 介质阻挡放电等离子体甲烷部分氧化重整制氢[J]. 物理化学学报,2015,31(7):1406−1412. doi: 10.3866/PKU.WHXB201504272

    WANG Hao, SONG Ling-jun, LI Xing-hu, YUE Li-meng. Hydrogen production from partial oxidation of methane by dielectric barrier discharge plasma reforming[J]. Acta Phys-Chim Sin,2015,31(7):1406−1412. doi: 10.3866/PKU.WHXB201504272
    [15]
    周志鹏, 张济民, 叶桃红, 赵平辉, 夏维东. 电晕诱导介质阻挡放电/催化剂协同作用下甲烷的部分氧化水蒸气重整制氢[J]. 科学通报,2011,56(12):983−988.

    ZHOU Zhi-peng, ZHANG Ji-min, YE Tao-hong, ZHAO Ping-hui, XIA Wei-dong. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor[J]. Chin Sci Bull,2011,56(12):983−988.
    [16]
    徐锋, 李创, 朱丽华. 低温等离子体促进煤层甲烷活化转化[J]. 黑龙江科技大学学报,2015,25(6):597−601. doi: 10.3969/j.issn.2095-7262.2015.06.005

    XU Feng, LI Chuang, ZHU Li-hua. Study on activation and conversion of methane using non-thermal plasma[J]. J Heilongjiang Univ Sci Technol,2015,25(6):597−601. doi: 10.3969/j.issn.2095-7262.2015.06.005
    [17]
    徐锋, 聂欣雨, 李凡, 田瑶瑶. 甲烷和水蒸气介质阻挡放电转化的影响因素[J]. 黑龙江科技大学学报,2020,30(1):56−60. doi: 10.3969/j.issn.2095-7262.2020.01.010

    XU Feng, NIE Xin-yu, LI Fan, TIAN Yao-yao. Influencing factors of methane-steam conversion with dielectric barrier discharge[J]. J Heilongjiang Univ Sci Technol,2020,30(1):56−60. doi: 10.3969/j.issn.2095-7262.2020.01.010
    [18]
    WANG Y F, TSAI C H, CHANG W Y, KUO Y M. Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor[J]. Int J Hydrogen Energy,2010,35(1):135−140. doi: 10.1016/j.ijhydene.2009.10.088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2385) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return