Volume 49 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG De-liang, CHEN Zhao-hui, YU Jian, GAO Shi-qiu. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-640. doi: 10.1016/S1872-5813(21)60030-0
Citation: WANG De-liang, CHEN Zhao-hui, YU Jian, GAO Shi-qiu. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-640. doi: 10.1016/S1872-5813(21)60030-0

Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles

doi: 10.1016/S1872-5813(21)60030-0
Funds:  The project was supported by the National Key Research and Development Program of China (2016YFB0600304) and the National Natural Science Foundation of China (21878310)
  • Received Date: 2020-12-22
  • Rev Recd Date: 2021-01-14
  • Available Online: 2021-03-30
  • Publish Date: 2021-05-28
  • The effects of SiO2/Al2O3 ratio of HZSM-5 on the tar quality and coke formation during catalytic upgrading of coal pyrolysis volatiles were investigated. The results showed that the carbon deposition amount decreased with the increase of the SiO2/Al2O3 ratio of HZSM-5 due to the decrease of strong and weak acid amount. When the SiO2/Al2O3 ratio increased from 23 to 310, the carbon deposition amount decreased from 120.1 mg/g-catalyst to 23.9 mg/g-catalyst. Moreover, the higher ratio of strong and weak acid amount led to lighter fraction in tar. With the decrease of SiO2/Al2O3 ratio, the acid strength was enhanced so that the aromatics content in the tars decreased, indicating that the stronger acidic sites promoted the dehydrogenation, cyclization and aromatization reactions of volatiles, thus leading to higher yield of aromatics during catalytic coal pyrolysis.
  • loading
  • [1]
    敦启孟, 陈兆辉, 皇甫林, 周杨, 余剑, 高士秋, 刘鸿雁. 温度和停留时间对煤热解挥发分二次反应的影响[J]. 过程工程学报,2018,18(1):140−147.

    DUN Qi-meng, CHEN Zhao-hui, HUANG Fu-Lin, ZHOU Yang, YU Jian, GAO Shi-qiu, LIU Hong-yan. Influences of temperature and residence time on secondary reactions of volatiles from coal pyrolysis[J]. Chin J Process Eng,2018,18(1):140−147.
    [2]
    陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报,2017,68(10):3693−3707.

    CHEN Zhao-hui, GAO Shi-qiu, XU Guang-wen. Analysis and control methods of coal pyrolysis process[J]. Chin J Chem Eng,2017,68(10):3693−3707.
    [3]
    WANG D, CHEN Z, ZHOU Z, WANG D, YU J, GAO S. Catalytic upgrading of volatiles from coal pyrolysis over sulfated carbon-based catalysts derived from waste red oil[J]. Fuel Process Technol,2019,189:98−109. doi: 10.1016/j.fuproc.2019.03.003
    [4]
    WANG D, WANG D, YU J, CHEN Z, LI Y, GAO S. Role of alkali sodium on the catalytic performance of red mud during coal pyrolysis[J]. Fuel Process Technol,2019,186:81−87. doi: 10.1016/j.fuproc.2018.12.023
    [5]
    陈兆辉, 敦启孟, 石勇, 高士秋. 热解温度和反应气氛对输送床煤快速热解的影响[J]. 化工学报,2017,68(4):1566−1573.

    CHEN Zhao-hui, DUN Qi-meng, SHI Yong, GAO Shi-qiu. Effects of pyrolysis temperature and atmosphere on rapid coal pyrolysis in transport bed reactor[J]. Chin J Chem Eng,2017,68(4):1566−1573.
    [6]
    REN X Y, CAO J P, ZHAO X Y, YANG Z, LIU T L, FAN X, ZHAO Y P, WEI X-Y. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel,2018,218:33−40. doi: 10.1016/j.fuel.2018.01.017
    [7]
    REN X Y, CAO J P, ZHAO X Y, SHEN W Z, WEI X Y. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5[J]. J Anal Appl Pyrolysis,2018,130:190−197. doi: 10.1016/j.jaap.2018.01.010
    [8]
    LIU T L, CAO J P, ZHAO X Y, WANG J X, REN X Y, FAN X, ZHAO Y P, WEI X Y. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Process Technol,2017,160:19−26. doi: 10.1016/j.fuproc.2017.02.012
    [9]
    LI Q, FENG X, WANG X, WU T, ZHU Y, LI S. Pyrolysis of Yulin coal over ZSM-22 supported catalysts for upgrading coal tar in fixed bed reactor[J]. J Anal Appl Pyrolysis,2017,126:390−396. doi: 10.1016/j.jaap.2017.05.004
    [10]
    AMIN M N, LI Y, RAZZAQ R, LU X, LI C, ZHANG S. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. J Anal Appl Pyrolysis,2016,118:54−62. doi: 10.1016/j.jaap.2015.11.019
    [11]
    YANG Z, CAO J P, REN X Y, ZHAO X Y, LIU S N, GUO Z X, SHEN W Z, BAI J WEI X Y. Preparation of hierarchical HZSM-5 based sulfated zirconium solid acid catalyst for catalytic upgrading of pyrolysis vapors from lignite pyrolysis[J]. Fuel,2019,237:1079−1085. doi: 10.1016/j.fuel.2018.10.049
    [12]
    HE Y, YAN L, LIU Y, BAI Y, WANG J, LI F. Effect of SiO2/Al2O3 ratio of HZSM-5 zeolites on the formation of light aromatics during lignite pyrolysis[J]. Fuel Process Technol,2019,188:70−78. doi: 10.1016/j.fuproc.2019.02.004
    [13]
    ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, DELIMITIS A, LAPPAS A A, TRIANTAFYLLIDIS K S. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Appl Catal B: Environ,2012,127:281−290. doi: 10.1016/j.apcatb.2012.08.030
    [14]
    ZHAO J P, CAO J P, WEI F, FENF X B, YAO N Y, ZHAO Y P, ZHAO M, ZHAO X Y, ZHANG J L, WEI X Y. Catalytic reforming of lignite pyrolysis volatiles over sulfated HZSM-5: Significance of the introduced extra-framework Al species[J]. Fuel,2020,273:117789.
    [15]
    GALADIMA A, MURAZA O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review[J]. Energ Convers Manage,2015,105:338−354. doi: 10.1016/j.enconman.2015.07.078
    [16]
    LONG R Q, YANG R T. Temperature-programmed desorption/surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia[J]. J Catal,2001,198(1):20−28. doi: 10.1006/jcat.2000.3118
    [17]
    COSTA C, LOPES J M, LEMOS F, RIBEIRO F R. Activity-acidity relationship in zeolite Y[J]. J Mol Catal A: Chem,1999,144(1):221−231. doi: 10.1016/S1381-1169(98)00367-7
    [18]
    LI Y, AMIN M N, LU X, LI C, REN F, ZHANG S. Pyrolysis and catalytic upgrading of low-rank coal using a NiO/MgO-Al2O3 catalyst[J]. Chem Eng Sci,2016,155:194−200. doi: 10.1016/j.ces.2016.08.003
    [19]
    MIN Z, ASADULLAH M, YIMSIRI P, ZHANG S, WU H, LI C Z. Catalytic reforming of tar during gasification. Part I. Steam reforming of biomass tar using ilmenite as a catalyst[J]. Fuel,2011,90(5):1847−1854. doi: 10.1016/j.fuel.2010.12.039
    [20]
    MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62(2/3):119−135.
    [21]
    REN X Y, CAO J P, ZHAO X Y, YANG Z, LIU S N, WEI X Y. Enhancement of aromatic products from catalytic fast pyrolysis of lignite over hierarchical HZSM-5 by piperidine-assisted desilication[J]. ACS Sustainable Chem Eng,2018,6(2):1792−1802. doi: 10.1021/acssuschemeng.7b03185
    [22]
    REN X Y, CAO J P, ZHAO X Y, YANG Z, WANG Y J, CHEN Q, ZHAO M, WEI X Y. Catalytic conversion of lignite pyrolysis volatiles to light aromatics over ZSM-5: SiO2/Al2O3 ratio effects and mechanism insights[J]. J Anal Appl Pyrolysis,2019,139:22−30. doi: 10.1016/j.jaap.2019.01.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3078) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return