Volume 49 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
SUN Ruo-lin, ZHANG Si-ran, AN Kang, SONG Peng-fei, LIU Yuan. Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for synergistic catalysis of CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 799-808. doi: 10.1016/S1872-5813(21)60032-4
Citation: SUN Ruo-lin, ZHANG Si-ran, AN Kang, SONG Peng-fei, LIU Yuan. Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for synergistic catalysis of CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 799-808. doi: 10.1016/S1872-5813(21)60032-4

Cu1.5Mn1.5O4 spinel type composite oxide modified with CuO for synergistic catalysis of CO oxidation

doi: 10.1016/S1872-5813(21)60032-4
Funds:  The project was supported by the Natural Science Foundation of China (21872101, 21576192), Science and Technology Program of Tianjin, China (18ZXSZSF00070)
  • Received Date: 2020-11-23
  • Rev Recd Date: 2021-01-08
  • Available Online: 2021-03-30
  • Publish Date: 2021-06-30
  • Composite oxides of copper and manganese are widely used in oxidation reactions, and the main active component is copper-manganese spinel, whereas the copper oxide and manganese oxide show extremely low activity, despite that they are beneficial for CO oxidation. In this paper, it was found that the synergistic effect of Cu1.5Mn1.5O4 and CuO could promote the catalytic oxidation of CO. The catalysts were prepared using the citric acid complexation method and they were characterized through combined the techniques of N2-adsorption desorption, XRD, H2-TPR, TEM, CO-TPD and O2-TPD. The catalytic performance of various catalysts in CO oxidation was then evaluated. The results confirmed that Cu1.5Mn1.5O4 modified with CuO exhibited the best catalytic performance and the highest unit surface activity (defined as the CO conversion rate per unit surface area of catalyst). CuO and Cu1.5Mn1.5O4 had a synergistic effect, where O2 was activated by CuO and it then interacted with CO, activated by Cu1.5Mn1.5O4, to form CO2, thus increasing the catalytic activity.
  • loading
  • [1]
    FREUND H, MEIJER G, SCHEFFLER M, SCHLOGL R, WOLF M. CO oxidation as a prototypical reaction for heterogeneous processes[J]. Angew Chem Int Ed,2011,50(43):10064−10094. doi: 10.1002/anie.201101378
    [2]
    GURTU S, RAI S, EHARA M, PRIYAKUMAR U D. Ability of density functional theory methods to accurately model the reaction energy pathways of the oxidation of CO on gold cluster: A benchmark study[J]. Theor Chem Acc,2016,135(934).
    [3]
    FALSIG H, HVOLBAEK B, KRISTENSEN I S, JIANG T, BLIGAARD T, CHRISTENSEN C H, NORSKOV J K. Trends in the catalytic CO oxidation activity of nanoparticles[J]. Angew Chem Int Ed,2008,47(26):4835−4839. doi: 10.1002/anie.200801479
    [4]
    LI X, WANG L, MOU L, HE S. Catalytic CO oxidation by gas-phase metal oxide clusters[J]. J Phys Chem A,2019,123(43):9257−9267. doi: 10.1021/acs.jpca.9b05185
    [5]
    WANG L, LI X, HE S. Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters[J]. Sci China Mater,2020,63(6SI):892−902.
    [6]
    GUO Q, LIU Y. MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases[J]. Appl Catal B: Environ,2008,82(1/2):19−26. doi: 10.1016/j.apcatb.2008.01.007
    [7]
    HASEGAWA Y, MAKI R, SANO M, MIYAKE T. Preferential oxidation of CO on copper-containing manganese oxides[J]. Appl Catal A: Gen,2009,371(1/2):67−72. doi: 10.1016/j.apcata.2009.09.028
    [8]
    LI J, ZHU P, ZUO S, HUANG Q, ZHOU R. Influence of Mn doping on the performance of CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich streams[J]. Appl Catal A: Gen,2010,381(1/2):261−266. doi: 10.1016/j.apcata.2010.04.020
    [9]
    THERRIEN A J, HENSLEY A J R, MARCINKOWSKI M D, ZHANG R, LUCCI F R, COUGHLIN B, SCHILLING A C, MCEWEN J, SYKES E C H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation[J]. Nat Catal,2018,1(3):192−198. doi: 10.1038/s41929-018-0028-2
    [10]
    KUNG H H, KUNG M C, COSTELLO C K. Supported Au catalysts for low temperature CO oxidation[J]. J Catal,2003,216(1/2):425−432. doi: 10.1016/S0021-9517(02)00111-2
    [11]
    SATSUMA A, OSAKI K, YANAGIHARA M, OHYAMA J, SHIMIZU K. Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts[J]. Appl Catal B: Environ,2013,132:511−518.
    [12]
    JOO S H, PARK J Y, RENZAS J R, BUTCHER D R, HUANG W, SOMORJAI G A. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation[J]. Nano Lett,2010,10(7):2709−2713. doi: 10.1021/nl101700j
    [13]
    ROYER S, DUPREZ D. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. ChemCatChem,2011,3(1):24−65. doi: 10.1002/cctc.201000378
    [14]
    LANG Y, ZHANG J, FENG Z, LIU X, ZHU Y, ZENG T, ZHAO Y, CHEN R, SHAN B. CO oxidation over MOx (M = Mn, Fe, Co, Ni, Cu) supported on SmMn2O5 composite catalysts[J]. Catal Sci Technol,2018,8(21):5490−5497. doi: 10.1039/C8CY01263F
    [15]
    WOJCIECHOWSKA M, MALCZEWSKA A, CZAJKA B, ZIELINSKI M, GOSLAR J. The structure and catalytic activity of the double oxide system Cu-Mn-O/MgF2[J]. Appl Catal A: Gen,2002,237(1/2):63−70. doi: 10.1016/S0926-860X(02)00297-1
    [16]
    GUO Y, LIN J, LI C, LU S, ZHAO C. Copper manganese oxides supported on multi-walled carbon nanotubes as an efficient catalyst for low temperature CO oxidation[J]. Catal Lett,2016,146(11):2364−2375. doi: 10.1007/s10562-016-1869-4
    [17]
    ZHOU Y, LIU X Y, WANG K, LI J, ZHAGN X L, JIN X, TANG X Y, ZHU X H, ZHANG R S, JIANG X, LIU B D. Porous Cu-Mn-O catalysts fabricated by spray pyrolysis method for efficient CO oxidation[J]. Results Phys,2019,12:1893−1900.
    [18]
    DEY S, DHAL G C, MOHAN D, PRASAD R. The choice of precursors in the synthesizing of CuMnOx catalysts for maximizing CO oxidation[J]. Int J Ind Ergonom,2018,9(3):199−214.
    [19]
    JAIN N, ROY A. Phase & morphology engineered surface reducibility of MnO2 nano-heterostructures: Implications on catalytic activity towards CO oxidation[J]. Mater Res Bull,2020,121(110615).
    [20]
    LUO M F, FANG P, HE M, XIE Y L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J Mol Catal A: Chem,2005,239(1/2):243−248. doi: 10.1016/j.molcata.2005.06.029
    [21]
    BUCIUMAN F C, PATCAS F, HAHN T. A spillover approach to oxidation catalysis over copper and manganese mixed oxides[J]. Chem Eng Process,1999,38(4):563−569.
    [22]
    张纪领, 尹燕华, 张志梅, 周智勇. CO低温氧化霍加拉特催化剂的研究综述[J]. 舰船防化,2007,(3):9−15.

    ZHANG Ji-ling, YIN Yan-hua, ZHANG Zhi-mei, ZHOU Zhi-yong. Review of hopcalite catalyst for carbon monoxide low-temperature oxidation[J]. Chem Def Ships,2007,(3):9−15.
    [23]
    QIAN K, QIAN Z, HUA Q, JIANG Z, HUANG W. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation[J]. Appl Surf Sci,2013,273:357−363. doi: 10.1016/j.apsusc.2013.02.043
    [24]
    SCHWAB G M, KANUNGO S B. Die katalytische Verstärkung im Hopcalit[J]. Zeitschrift für Physikalische Chemie,1977,107(1):109−120.
    [25]
    FORTUNATO G, OSWALD H R, RELLER A. Spinel-type oxide catalysts for low temperature CO oxidation generated by use of an ultrasonic aerosol pyrolysis process[J]. J Mater Chem,2001,11(3):905−911. doi: 10.1039/b007306g
    [26]
    TANG Z R, KONDRAT S A, DICKINSON C, BARTLEY J K, CARLEY A F, TAYLOR S H, DAVIES T E, ALLIX M, ROSSEINSKY M J, CLARIDGE J B, XU Z, ROMANI S, CRUDACE M J, HUTCHINGS G J. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature[J]. Catal Sci Technol,2011,1(5):740−746. doi: 10.1039/c1cy00064k
    [27]
    CAI L, GUO Y, LU A, BRANTON P, LI W. The choice of precipitant and precursor in the co-precipitation synthesis of copper manganese oxide for maximizing carbon monoxide oxidation[J]. J Mol Catal A: Chem,2012,360:35−41. doi: 10.1016/j.molcata.2012.04.003
    [28]
    EINAGA H, KIYA A, YOSHIOKA S, TERAOKA Y. Catalytic properties of copper-manganese mixed oxides prepared by coprecipitation using tetramethylammonium hydroxide[J]. Catal Sci Technol,2014,4(10):3713−3722. doi: 10.1039/C4CY00660G
    [29]
    LIU T, YAO Y, WEI L, SHI Z, HAN L, YUAN H, LI B, DONG L, WANG F, SUN C. Preparation and evaluation of copper manganese oxide as a high-efficiency catalyst for CO oxidation and NO reduction by CO[J]. J Phys Chem C,2017,121(23):12757−12770. doi: 10.1021/acs.jpcc.7b02052
    [30]
    RO I, ARAGAO I B, CHADA J P, LIU Y, RIVERA-DONES K R, BALL M R, ZANCHET D, DUMESIC J A, HUBER G W. The role of Pt-FexOy interfacial sites for CO oxidation[J]. J Catal,2018,358:19−26. doi: 10.1016/j.jcat.2017.11.021
    [31]
    LIU M, CHEN Y, LIN T, MOU C. Defective mesocrystal ZnO-supported gold catalysts: facilitating CO oxidation via vacancy defects in ZnO[J]. ACS Catal,2018,8(8):6862−6869. doi: 10.1021/acscatal.8b01282
    [32]
    YANG T, FUKUDA R, HOSOKAWA S, TANAKA T, SAKAKI S, EHARA M. A Theoretical investigation on CO oxidation by single-atom catalysts M1/γ-Al2O3(M = Pd, Fe, Co, and Ni)[J]. Chem Cat Chem,2017,9(7):1222−1229. doi: 10.1002/cctc.201601713
    [33]
    MA B, KONG C, LÜ J, ZHANG X, YANG S, YANG T, YANG Z. Cu-Cu2O Heterogeneous architecture for the enhanced CO catalytic oxidation[J]. Adv Mater Interfaces,2020,7(7):19016437.
    [34]
    LEOFANTI G, PADOVAN M, TOZZOLA G, VENTURELLI B. Surface area and pore texture of catalysts[J]. Catal Today,1998,41(1/3):207−219. doi: 10.1016/S0920-5861(98)00050-9
    [35]
    LI Y, PENG H, XU X, PENG Y, WANG X. Facile preparation of mesoporous Cu-Sn solid solutions as active catalysts for CO oxidation[J]. RSC Adv,2015,5(33):25755−25764. doi: 10.1039/C5RA00635J
    [36]
    LI F, ZHANG R, LI Q, ZHAO S. Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction[J]. Res Chem Intermediat,2017,43(11):6505−6519. doi: 10.1007/s11164-017-3001-9
    [37]
    MA P, GENG Q, GAO X, YANG S, LIU G. Spectrally selective Cu1.5Mn1.5O4 spinel ceramic pigments for solar thermal applications[J]. RSC Adv,2016,6:32947. doi: 10.1039/C6RA03300H
    [38]
    ZHANG M, LI W, WU X, ZHAO F, WANG D, ZHA X, LI S, LIU H, CHEN Y. Low-temperature catalytic oxidation of benzene over nanocrystalline Cu–Mn composite oxides by facile sol-gel synthesis[J]. New J Chem,2020,44(6):2442−2451. doi: 10.1039/C9NJ05097C
    [39]
    JEON W, CHOI I, PARK J, LEE J, HWANG K. Alkaline wet oxidation of lignin over Cu-Mn mixed oxide catalysts for production of vanillin[J]. Catal Today,2020,352(SI):95−103.
    [40]
    TANG X, FEI J, HOU Z, ZHENG X, LOU H. Characterization of Cu-Mn/Zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO-H2[J]. Energy Fuels,2008,22(5):2877−2884. doi: 10.1021/ef800259e
    [41]
    WANG Y, LIU X, HU X, WU R, ZHAO Y. Preparation and characterization of Cu-Mn composite oxides in N2O decomposition[J]. React Kinet Mech Catal,2020,129(1):165−179. doi: 10.1007/s11144-019-01691-w
    [42]
    TABAKOVA T, IDAKIEV V, AVGOUROPOULOS G, PAPAVASILIOU J, MANZOLI M, BOCCUZZI F, IOANNIDES T. Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor[J]. Appl Catal A: Gen,2013,451:184−191. doi: 10.1016/j.apcata.2012.11.025
    [43]
    LI Z, WANG H, WU X, YE Q, XU X, LI B, WANG F. Novel synthesis and shape-dependent catalytic performance of Cu-Mn oxides for CO oxidation[J]. Appl Surf Sci,2017,403:335−341. doi: 10.1016/j.apsusc.2017.01.169
    [44]
    MORALES M R, BARBERO B P, CADUS L E. Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts[J]. Appl Catal B: Environ,2006,67(3/4):229−236. doi: 10.1016/j.apcatb.2006.05.006
    [45]
    PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts[J]. J Catal,2007,251(1):7−20. doi: 10.1016/j.jcat.2007.07.025
    [46]
    VEPREK S, COCKE D L, KEHL S, OSWALD H R. Mechanism of the deactivation of hopcalite catalysts studied by XPS, ISS, and other techniques[J]. J Catal,1986,100:250−263. doi: 10.1016/0021-9517(86)90090-4
    [47]
    CHEN Y, LIU D, YANG L, MENG M, ZHANG J, ZHENG L, CHU S, HU T. Ternary composite oxide catalysts CuO/Co3O4-CeO2 with wide temperature-window for the preferential oxidation of CO in H2-rich stream[J]. Chem Eng J,2013,234:88−98. doi: 10.1016/j.cej.2013.08.063
    [48]
    KIMI M, JAIDIE M M H, PANG S C. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol[J]. J Phys Chem Solids,2018,112:50−53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (643) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return