Volume 49 Issue 5
May  2021
Turn off MathJax
Article Contents
HUANG Peng, WU Yan, MA Bo-wen, MAO Xue-feng, LIU Min. Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 664-672. doi: 10.1016/S1872-5813(21)60039-7
Citation: HUANG Peng, WU Yan, MA Bo-wen, MAO Xue-feng, LIU Min. Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 664-672. doi: 10.1016/S1872-5813(21)60039-7

Study on direct conversion of Naomaohu coal pyrolysis heavy oil to aromatics

doi: 10.1016/S1872-5813(21)60039-7
Funds:  The project was supported by the National Key Research and Development Project (2016YFB0600305)
  • Received Date: 2020-12-28
  • Rev Recd Date: 2021-01-24
  • Available Online: 2021-03-30
  • Publish Date: 2021-05-28
  • The pyrolysis tar from Naomaohu coal was separated by distillation apparatus. Four components of heavy oil above 320 ℃ were analyzed. The result showed the colloid content was 28.84% and the asphaltene content was 35.12%, and both were difficult to convert in hydrogenation. 13C-NMR results showed that the relative molar ratio of aromatic carbon in heavy oil was 71.16%, which indicated that aromatic compounds in heavy fraction were dominant. The heavy fraction was treated by suspension bed and fixed bed cracking. The asphaltene and colloid were almost completely converted. The yield of naphtha with boiling point below 180 ℃ was 66.95%, and the diesel with boiling point higher than 180 ℃ was 17.84%. Oxygen, nitrogen and sulfur contained in heteroatoms were almost completely removed. Catalytic reforming of naphtha was carried out. The results showed that the number of cycloalkanes decreased by 60.23%, and the number of aromatics increased by 65.8%, which indicated that the dehydrogenation and aromatization of cycloalkanes occurred mainly. While the number of n-alkanes decreased by 13.42%, which indicated that the isomerization and cyclization of n-alkanes occurred simultaneously. The catalytic reforming oil contained more benzene, toluene, xylene and ethylbenzene, and the contents were 11.97%, 23.15%, 21.43% and 3.48% respectively. In the direct conversion process of heavy oil from coal pyrolysis, the transmissibility of basic structural units of coal was significantly reflected.
  • loading
  • [1]
    陈浩. 芳烃产业发展现状及趋势分析[J]. 炼油技术与工程,2020,50(7):1−4.

    CHEN Hao. Analysis on the development status and trend of aromatics industry[J]. Pet Refin Eng,2020,50(7):1−4.
    [2]
    CHEN Z H, HOU Y L, SONG W L, CAI D L, YANG Y F, CUI Y, QIAN W Z. High-yield production of aromatics from methanol using a temperature-shifting multi-stage fluidized bed reactor technology[J]. Chem Eng J,2019,371(9):639−646.
    [3]
    杨成, 张成华, 许健, 吴宝山, 杨勇, 李永旺. 氧化锆催化合成气直接转化制芳烃[J]. 燃料化学学报,2016,44(7):837−844. doi: 10.3969/j.issn.0253-2409.2016.07.009

    YANG Cheng, ZHANG Cheng-hua, XU Jian, WU Bao-shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. J Fuel Chem Technol,2016,44(7):837−844. doi: 10.3969/j.issn.0253-2409.2016.07.009
    [4]
    MARCO M, LOPEZ J A, HE Q, MORGAN D J, RYABENKOVA Y, BARTLEY J K, CARLEY A F, TAYLOR S H, KIELY C J, KHALID K, JUTCHING G J. Modified zeolite ZSM-5 for the methanol to aromatics reaction[J]. Catal Sci Technol,2011,2(1):105−112.
    [5]
    谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002.

    XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing: Science press, 2002.
    [6]
    WANG J P, LI G Y, GUO R, LI A Q, LIANG Y H. Theoretical and experimental insight into coal structure: Establishing a chemical model for Yuzhou lignite[J]. Energy Fuels,2016,31(1):124−132.
    [7]
    XU Y, CH X, WANG L, BEI K, WANG J L, CHOU L M, PAN Z Y. Progress of Raman spectroscopic investigations on the structure and properties of coal[J]. J Raman Spectrosc,2020,51(9):1874−1884. doi: 10.1002/jrs.5826
    [8]
    WU D, ZhANG W. Evolution mechanism of macromolecular structure in coal during heat treatment: Based on FTIR and XRD in situ analysis techniques[J]. J Spectrosc,2019,2019(4):1−18.
    [9]
    谢克昌, 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 北京: 化学工业出版社, 2010.

    XIE Ke-chang, GAO Jin-sheng. Coal Pyrolysis, Coking and Coal Tar Processing[M]. Beijing: Chemical Industry Press, 2010.
    [10]
    史航. 煤及显微组分热解行为研究[D]. 大连: 大连理工大学, 2020.

    SHI Hang. Pyrolysis behavior of coals and their macerals[D]. Dalian: Dalian University of Technology, 2020.
    [11]
    SAKAI T, MURAKAMI T, YAMAMOTO Y, UCHIYAMA H, KOMOTO T, TEZUKA T. A naphthenic oil of hydrogenated coal tar distil-late as a lubricant with low solidification pressure[J]. J Synth Lubr,1992,9(3):223−235. doi: 10.1002/jsl.3000090304
    [12]
    RUCKMICK S C, HURTUBISE R, SILVER H F. Separation and characterization of large-ring number polycyclic aromatic hydrocarbons in non-distillable, pyridine soluble coal-liquids[J]. Fuel,1986,65(12):1677−1683. doi: 10.1016/0016-2361(86)90268-1
    [13]
    王秀红. 煤液化油中芳烃/环烷烃分离规律及其机理研究[D]. 太原: 太原理工大学, 2011.

    WANG Xiu-hong. Separation rule of aromatics/cyclichydrocarbon in coal liquefaction and its mechanism in separation[D]. Taiyuan: Taiyuan University of Technology, 2011.
    [14]
    BALSTER L M, CORPORAN E, DEWITT M J, EDWARDS T, ERVIN J S, GRAHAM J L, LEE S Y, PAL S, PHELPS D K, RUDNICK L S, SANTORO R J, SCHOBERT H H, SHAFER L M, STRIEBICH R C, WEST Z J, WILSON G R, WOODWARD R, ZABARNICK S. Development of an advanced, thermally stable, coal-based jet fuel[J]. Fuel Process Technol,2008,89(4):364−378. doi: 10.1016/j.fuproc.2007.11.018
    [15]
    ZEIGLER C, WILTON N, ROBBAT A. Toward the accurate analysis of C1-C4 polycyclic aromatic sulfur heterocycles[J]. Anal Chem,2012,84(5):2245−2252. doi: 10.1021/ac202845x
    [16]
    BAE J S, HWANG I S, KWEON Y J, CHOI Y C, PARK S J, KIM H J, JUNG HEON, HAN C. Economic evaluations of direct, indirect and hybrid coal liquefaction[J]. Korean J Chem Eng,2012,29(7):868−875. doi: 10.1007/s11814-011-0266-3
    [17]
    张昌鸣, 李允梅, 令狐文生, 王志杰, 杨建丽, 刘振宇. 气-液色谱联合分析煤油共炼产物族组成[J]. 分析试验室,2003,(2):24−26. doi: 10.3969/j.issn.1000-0720.2003.02.008

    ZHANG Chang-ming, LI Yun-mei, LINGHU Wen-sheng, WANG Zhi-jie, YANG Jian-li, LIU Zhen-yu. Analysis of group composition in product from coprocessing of coal and petroleum resid by gas-liquid chromatography[J]. Chin J Anal Lab,2003,(2):24−26. doi: 10.3969/j.issn.1000-0720.2003.02.008
    [18]
    陈繁荣, 马晓迅, 曹巍, 杜鹏鹏, 孙鸣. 陕北中低温煤焦油常压馏分的GC/MS分析[J]. 煤炭转化,2013,36(4):52−56. doi: 10.3969/j.issn.1004-4248.2013.04.012

    CHEN Fan-rong, MA Xiao-xun, CAO Wei, DU Peng-peng, SUN Ming. Atmospheric distillation and GC/MS analysis of coal tar in low temperature from northern Shaanxi[J]. Coal Convers,2013,36(4):52−56. doi: 10.3969/j.issn.1004-4248.2013.04.012
    [19]
    易兰. 煤直接转化液体产物中芳香族化合物缔合结构解析与组分分离[D]. 杭州: 浙江大学, 2020.

    YI Lan. Association structure analysis and component separation of aromactic compounds in liquid products from direct coal conversion[D]. Hangzhou: Zhejiang University, 2020.
    [20]
    王伟. 中低温煤焦油重质组分分析及其加氢性能研究[D]. 太原: 太原理工大学, 2019.

    WANG Wei. Characterization and hydrogenation performance of heavy components of medium and low temperature coal tar[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [21]
    蔺华林, 李永伦, 王国龙, 张德祥, 高晋生. 煤液化油的梯度洗脱及芳烃组成分析[J]. 自然科学版,2010,36(4):488−492.

    LIN Hua-lin, LI Yong-lun, WANG Guo-long, ZHANG De-xiang, GAO Jin-sheng. Gradientrlution of coal liquefaction oil and analysis of aromatics constitutes[J]. J East China Univ Sci Technol, Nat Sci Ed,2010,36(4):488−492.
    [22]
    吴艳, 颜丙峰, 赵渊, 胡发亭. 基于分子质量的煤沥青芳香分组成结构表征[J]. 煤炭学报,2018,43(11):3226−3231.

    WU yan, YAN Bing-feng, ZHAO Yuan, HU Fa-ting. Structural characterization of coal tar pitch aromatic component based on molecular weight[J]. J China Coal Soc,2018,43(11):3226−3231.
    [23]
    黄澎, 张晓静, 毛学锋, 李伟林. 神府煤液化油加氢精制过程中硫氮化合物分布的变化[J]. 燃料化学学报,2016,44(1):37−43. doi: 10.3969/j.issn.0253-2409.2016.01.006

    HUANG Peng, ZHANG Xiao-jing, MAO Xue-feng, LI Wei-lin. Change of sulfur and nitrogen compounds in the direct liquefaction oil from Shenfu coal upon the hydrofining process[J]. J Fuel Chem Technol,2016,44(1):37−43. doi: 10.3969/j.issn.0253-2409.2016.01.006
    [24]
    SUN M, ZHANG D, YAO Q X, LIU Y Q, SU X P, JIA C Q, HAO Q Q, MA X X. Separation and Composition Analysis of GC/MS Analyzable and Unanalyzable Parts from Coal Tar[J]. Energy Fuels,2018,32(7):7404−7411. doi: 10.1021/acs.energyfuels.8b01054
    [25]
    HUANG P, ZhANG X J, MAO X F. Research on the production of aromatic hydrocarbon via hydroreforming a light fraction in direct coal liquefaction oil[J]. Energy Fuels,2015,29(1):86−90. doi: 10.1021/ef502146a
    [26]
    王国龙, 黄珏, 徐蓉, 张德祥. 溶剂萃取煤液化油中芳烃[C] //上海市化学化工学会-2009年度学术年会论文集. 上海: 湖北教育出版社, 2009: 127−129.

    WANG Guo-long, HUANG Yu, XU Rong, ZHANG De-xiang. Solvent extraction of aromatic hydrocarbons from coal liquefaction oil[C] // Shanghai Society of Chemistry and Chemical Engineering-Proceedings of 2009 Annual Academic Conference. Shanghai: Hubei Education Press, 2009: 127−129.
    [27]
    黄澎, 李文博, 毛学锋, 赵鹏. 中温热解焦油重馏分悬浮床加氢裂化的研究[J]. 燃料化学学报,2020,48(2):154−162. doi: 10.3969/j.issn.0253-2409.2020.02.004

    UANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. J Fuel Chem Technol,2020,48(2):154−162. doi: 10.3969/j.issn.0253-2409.2020.02.004
    [28]
    BONNIFAY P, CHA B, BARBIER J C, VIDAL A. Maximizing aromatics production goal of IFP process[J]. Oil Gas J,1976,48−52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (342) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return