Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
GENG Yi-qi, GUO Yan-xia, FAN Biao, CHENG Fang-qin, CHENG Huai-gang. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013. doi: 10.1016/S1872-5813(21)60040-3
Citation: GENG Yi-qi, GUO Yan-xia, FAN Biao, CHENG Fang-qin, CHENG Huai-gang. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013. doi: 10.1016/S1872-5813(21)60040-3

Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification

doi: 10.1016/S1872-5813(21)60040-3
Funds:  The project was supported by the National Natural Science Foundation of China (51674162) and Young and Middle-aged Top Innovative Talent Funding Program in Universities of Shanxi Province
  • Received Date: 2020-12-22
  • Rev Recd Date: 2021-01-19
  • Available Online: 2021-03-30
  • Publish Date: 2021-07-15
  • As one of the important solid adsorbents for CCUS (CO2 Capture, Utilization and Storage), the calcium-based adsorbents have attracted wide attention because they can directly capture CO2 from high-temperature flue gas and have a low cost and good adsorption performance. However, the calcium-based adsorbents are easy to sinter during repeated adsorption-desorption cycles, which will cause a sharp drop in adsorption performance. In this work, the reaction kinetics, thermodynamics and the sintering mechanism of the calcium-based adsorbents were summarized. At the same time, the advantages and limitations of various anti-sintering modification methods were compared and analyzed. The results show that the hydration modification can cause the adsorbent to collapse and obtain a larger surface area. The acid solution modification will generate more gas and small molecules during the preparation process to increase the porosity of the absorbent. Doping modification can promote the adsorption and diffusion of CO2, and the dopant can be acted as a framework to separate CaO particles. It can be concluded that the doping modification is a relatively promising modification method due to its simple process and good performance; and the use of calcium-containing solid waste for preparation of anti-sintering modified adsorbents has great potential for application.
  • loading
  • [1]
    WANG J, YANG Y, JIA Q, SHI Y, GUAN Q, TANG N, NING P, WANG Q. Solid-waste-derived carbon dioxide-capturing materials[J]. ChemSusChem,2019,12(10):2055−2082. doi: 10.1002/cssc.201802655
    [2]
    张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州: 浙江大学, 2018.

    ZHANG Han. A modeling study of interactive feedbacks between carbon dioxide, global warming, ocean acidification, and the ocean carbon cycle[D]. Hangzhou: Zhejiang University, 2018.
    [3]
    HARVERY C. CO2 levels just hit another record—Here’s why it matters[N]. E&E News, 2019.
    [4]
    ANDREW W, MELVIN G R, CANNELL D. CO2 stabilization, climate change and the terrestrial carbon sink[J]. Glob Change Biol,2000,6(1):817−833.
    [5]
    何小钢, 张耀辉. 行业特征、环境规制与工业CO2排放——基于中国工业36个行业的实证考察[J]. 经济管理,2011,33(11):17−25.

    HE Xiao-gang, ZHANG Yao-hui. Industry characteristics, environmental regulations and industrial CO2 emissions——Based on empirical investigations of 36 industries in China[J]. Econ Manage J,2011,33(11):17−25.
    [6]
    XIA C Y, YE B, JIANG J, SHU Y T. Prospect of near-zero-emission IGCC power plants to decarbonize coal-fired power generation in China: Implications from the GreenGen project[J]. J Clean Prod,2020,271:122615.
    [7]
    UCHIDA T, GOTO T, YAMADA T, KIGA T, SPERO C. Oxyfuel combustion as CO2 capture technology advancing for practical use Callide oxyfuel project[J]. Energy Procedia,2013,37:1471−1479. doi: 10.1016/j.egypro.2013.06.022
    [8]
    ZHENG C G, LIU Z H, XIANG J, ZHANG L Q, LUO C, ZHAO Y C. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology[J]. Engineering,2015,1(1):139−149. doi: 10.15302/J-ENG-2015008
    [9]
    王珂. 高温固体吸附剂循环捕获燃煤烟气 CO2的实验与动力学研究[D]. 湖北: 华中科技大学, 2011.

    WANG Ke. Experimental and dynamical study of cyclic CO2 capture from coal combustion flue gases at high temperature using solid sorbents[D]. Hubei: Huazhong University of Science and Technology, 2011.
    [10]
    SHIMIZU T, HIRAMA T, HOSODA H, KITANO K, INAGAKI M, TEJIMA K. A twin fluid-red reactor for removal of CO2 from combustion processes[J]. Chem Eng Res Des,1999,77(1):62−68. doi: 10.1205/026387699525882
    [11]
    MACKENZIE A, GRANATSTEIN D L, ANTHONY E J, ABANADES J C. Economics of CO2 capture using the calcium cycle with a pressurized fluidized bed combustor[J]. Energy Fuels,2007,21(2):920−926. doi: 10.1021/ef0603378
    [12]
    SUO X L, SONG Y, SHENG J G. Experimental study on gasification of bituminutesous coal char with CO2 catalysed by CaO[C]. IOP Conference Series: Earth and Environmental Science, 2019, 354: 012036.
    [13]
    ABREU M, TEIXEIRA P, FILIPE R M, DOMINGUES L, PINHEIRO, MATOS A H. Modeling the deactivation of CaO-based sorbents during multiple Ca-looping cycles for CO2 post-combustion capture[J]. Comput Chem Eng,2020,134:1−16.
    [14]
    DI G A, GALLUCCI K, GIANCATERINO F, COURSON C, FOSCOLO P I. Multicycle sorption enhanced steam methane reforming with different sorbent regeneration conditions: Experimental and modelling study[J]. Chem Eng J,2019,377:1−19.
    [15]
    CAZORLA D, JOLY JP, LINARES S A, MARCILLA G C. Carbon dioxide-calcium oxide surface and bulk reactions: thermodynamic and kinetic approach[J]. J Phys Chem,1991,95:6611−6617. doi: 10.1021/j100170a043
    [16]
    BARKER R. The reversibility of the reaction $ {\rm{CaC}}{{\rm{O}}_{\rm{3}}}\rightleftarrows{\rm{CaO + C}}{{\rm{O}}_{\rm{2}}} $[J]. J Appl Chem Biotechnol,1973,23(1):733−742.
    [17]
    GRASA G, MURILLO R, ALONSOl M, ABANADES J C. Application of the random pore model to the carbonation cyclic reaction[J]. AIChE J,2009,55(5):1246−1255. doi: 10.1002/aic.11746
    [18]
    WU S F, LAN P Q. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst[J]. AIChE J,2012,58(5):1570−1577. doi: 10.1002/aic.12675
    [19]
    ZHOU Z, XU P, XIE M M, CHENG Z M, YUAN W K. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent[J]. Chem Eng Sci,2013,95:283−290. doi: 10.1016/j.ces.2013.03.047
    [20]
    BHATIA S K, PERLMUTTER D D. A random pore model for fluid-solid reactions I. Isothermal, kinetic control[J]. AIChE J,1980,26(3):379−386. doi: 10.1002/aic.690260308
    [21]
    LEE D. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide[J]. Chem Eng J,2004,100(1/3):71−77. doi: 10.1016/j.cej.2003.12.003
    [22]
    LIU W, DENNIS J S, SULTAN D S, REDFERN S, SCOTT S A. An investigation of the kinetics of CO2 uptake by a synthetic calcium based sorbent[J]. Chem Eng Sci,2012,69(1):644−658. doi: 10.1016/j.ces.2011.11.036
    [23]
    LI Z, SUN H, CAI N. Rate equation theory for the carbonation reaction of CaO with CO2[J]. Energy Fuels,2012,26(7):4607−4616. doi: 10.1021/ef300607z
    [24]
    SOLIS B H, CUI Y, WENH X, SEIFERT J, SCHAUERMANN S, SAUER J, SHAIKHUTDINOV S, FREUND H J. Initial stages of CO2 adsorption on CaO: A combined experimental and computational study[J]. Phys Chem Chem Phys,2017,19(6):4231−4242. doi: 10.1039/C6CP08504K
    [25]
    BESSON R, ROCHA V M, FAVERGEON L. CO2 adsorption on calcium oxide: An atomic-scale simulation study[J]. Surf Sci,2012,606(3-4):490−495. doi: 10.1016/j.susc.2011.11.016
    [26]
    CHEN H, ZHANG YF, LI Y, QI J Y, LIU R. A DFT study on the adsorption of CO2 molecules on CaO(001) surface at different coverages[J]. Chin J Struct Chem,2019,38(1):17−24.
    [27]
    张莹. 二氧化碳分子在CaO表面吸附机理的理论研究[D]. 福州: 福州大学, 2013.

    ZHANG Ying. Theoretical studies on the adsorption mechanisms of CO2 molecules on the CaO surfaces[D]. Fuzhou: Fuzhou University, 2013.
    [28]
    刘亮, 洪迪昆, 冯于川, 郭欣. CaO 基 CO2 吸附剂掺杂/负载活性组分的第一性原理[J]. 燃烧科学与技术,2017,23(5):412−417.

    LIU Liang, HONG Di-kun, FENG Yu-chuan, GUO Xin. Promoted CaO-based CO2 sorbents by first-principles calculations[J]. J Combust Sci Technol,2017,23(5):412−417.
    [29]
    李晓东, 刘成龙, 王长青, 马海霞. 第一性原理分析CO2 在 CaO(100) 表面的吸附性能[J]. 原子与分子物理学报,2016,33(5):893−900.

    LI Xiao-dong, LIU Cheng-long, WANG Chang-qing, MA Hai-xia. First-principles analyses of the adsorption properties of CO2 molecule on CaO (100) surfaces[J]. J At Mol Phys,2016,33(5):893−900.
    [30]
    ABANADES J C, ANTHONY E J. CO2 capture capacity of CaO in long series of carbonation calcination cycles[J]. Ind Eng Chem Res,2006,45(26):8846−8851. doi: 10.1021/ie0606946
    [31]
    ABANADES J C, ANTHONY E J, DENNIS Y L, SALVADOR C, ALVAREZ D. Capture of CO2 from combustion gases in a fluidized bed of CaO[J]. AIChE J,2004,50(7):1614−1622. doi: 10.1002/aic.10132
    [32]
    ARIAS B, DIRGO M E, ABANADES J C, LORENZO M, DIAZ L, ALVAREZ J. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot[J]. Int J Greenh Gas Control,2013,18:237−245. doi: 10.1016/j.ijggc.2013.07.014
    [33]
    KREMER J, GALLOY A, STRÖHLE J, EPPLE B. Continuous CO2 capture in a 1-MWth carbonate looping pilot plant[J]. Chem Eng Technol,2013,36(9):1518−1524. doi: 10.1002/ceat.201300084
    [34]
    HUANG C M, HSU H W, LIU W H, CHENG J Y, CHEN W C, WEN T W, CHEN W. Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant[J]. Energy Procedia,2011,4:1268−1275. doi: 10.1016/j.egypro.2011.01.183
    [35]
    FANG F, LI Z S, CAI N S. Continuous CO2 capture from flue gases using a dual fluidized bed reactor with calcium-based sorbent[J]. Ind Eng Chem Res,2009,48(24):11140−11147. doi: 10.1021/ie901128r
    [36]
    李英杰. 基于钙循环的燃煤电站捕集 CO2 系统模拟[J]. 煤炭学报,2011,36(1):118−123.

    LI Ying-jie. System simulation of CO2 capture for coal-fired power plant based on calcium looping cycle[J]. J China Coal Soc,2011,36(1):118−123.
    [37]
    CHANG M H, CHEN W C, HUANG C M, LIU W H, CHOU Y C, CHANG W C, CHEN W, CHENG J Y, HUANG K E, HSU H W. Design and experimental testing of a 1.9 MWth calcium looping pilot plant[J]. Energy Procedia,2014,63:2100−2108. doi: 10.1016/j.egypro.2014.11.226
    [38]
    TONG X, LIU W, YANG Y, SUN J, HU Y C, CHEN H Q, LI Q W. A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel Process Technol,2019,193:149−158. doi: 10.1016/j.fuproc.2019.05.018
    [39]
    COPPOLA A, ESPOSITO A, MONTAGNARO F, IULIANO M, SCALA F, SALATINO P. The combined effect of H2O and SO2 on CO2 uptake and sorbent attrition during fluidised bed calcium looping[J]. Proc Combust Inst,2019,37(4):4379−4387. doi: 10.1016/j.proci.2018.08.013
    [40]
    LUO C, ZHENG Y, GUO J, FENG B. Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle[J]. Fuel,2014,127:124−130. doi: 10.1016/j.fuel.2013.09.063
    [41]
    ABANADES J C, ALVAREZ D. Conversion limits in the reaction of CO2 with lime[J]. Energy Fuels,2003,17:308−315. doi: 10.1021/ef020152a
    [42]
    FUERTES A B, ALVAREZ D, RUBIERA F. Surface area and pore size changes during sintering of calcium oxide particles[J]. Chem Eng Commun,2007,109(1):73−88.
    [43]
    XU Y Q, LUO C, ZHENG Y, DING H R, WANG Q Y, SHEN Q W, LIA X S, ZHANG L Q. Characteristics and performance of CaO-based high temperature CO2 sorbents derived from a sol-gel process with different supports[J]. RSC Adv,2016,6:79285−79296. doi: 10.1039/C6RA15785H
    [44]
    ANTON I. LYSIKOV, ALEKSEY N S, ALEKSEY G O. Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J]. Ind Eng Chem Res,2007,46:4633−4638. doi: 10.1021/ie0702328
    [45]
    SUN P, GRACE J R, LIM C J, ANTHONY E J. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. AIChE J,2007,53(9):2432−2442. doi: 10.1002/aic.11251
    [46]
    BAZAIKIN Y V, DEREVSCHIKOV V S, MALKOVICH E G. Evolution of sorptive and textural properties of CaO-based sorbents during repetitive sorption/regeneration cycles: Part II. Modeling of sorbent sintering during initial cycles[J]. Chem Eng Sci,2019,199:156−163. doi: 10.1016/j.ces.2018.12.065
    [47]
    DURÁN-MARTÍN J D, SÁNCHEZ JIMENEZ P E, VALVERDE J M. Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage[J]. J Adv Res,2020,22:67−76. doi: 10.1016/j.jare.2019.10.008
    [48]
    ZHU Y, WU S, WANG X. Nano CaO grain characteristics and growth model under calcination[J]. Chem Eng J,2011,175:512−518. doi: 10.1016/j.cej.2011.09.084
    [49]
    LIU W Q, NATHANAEL, W L, BO L, GUO X. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture[J]. Environ Sci Technol,2010,44(2):841−847. doi: 10.1021/es902426n
    [50]
    MANOVIC V A, EDWARD J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J]. Environ Sci Technol,2008,42(11):4170−4174. doi: 10.1021/es800152s
    [51]
    LAN P, WU S. Mechanism for self-reactivation of nano-CaO-based CO2 sorbent in calcium looping[J]. Fuel,2015,143:9−15. doi: 10.1016/j.fuel.2014.11.004
    [52]
    ARIAS B, GRASA G S, ABANADES J C. Effect of sorbent hydration on the average activity of CaO in a Ca-looping system[J]. Chem Eng J,2010,163(3):324−330. doi: 10.1016/j.cej.2010.08.009
    [53]
    陈惠超, 赵长遂, 沈鹏. 烟气中水蒸气对钙基吸收剂碳酸化的影响特性[J]. 化工学报,2013,64(4):1365−1372.

    CHEN Hui-chao, ZHAO Chang-sui, SHEN Peng. Effect of steam in flue gas on CO2 capture for calcium based sorbent[J]. CIESC J,2013,64(4):1365−1372.
    [54]
    WANG Y, LIN S, SUZUKI Y. Experimental study on CO2 capture conditions of a fluidized bed limestone decomposition reactor[J]. Fuel Process Technol,2010,91:958−963. doi: 10.1016/j.fuproc.2009.07.011
    [55]
    LI Y J, ZHAO C S, QU C R, DUAN L B, LI Q Z, LIANG C. CO2 capture using CaO modified with ethanol/water solution during cyclic calcination/carbonation[J]. Chem Eng Technol,2008,31(2):237−244. doi: 10.1002/ceat.200700371
    [56]
    LI Y J, ZHAO C S, CHEN H, LIU Y. Enhancement of Ca-based sorbent multicyclic behavior in Ca looping process for CO2 separation[J]. Chem Eng Technol,2009,32(4):548−555. doi: 10.1002/ceat.200800525
    [57]
    HU Y C, LIU W Q, SUN J, LI M K, YANG X W, ZHANG Y, LIU X W, XU M H. Structurally improved CaO-based sorbent by organic acids for high temperature CO2 capture[J]. Fuel,2016,167:17−24. doi: 10.1016/j.fuel.2015.11.048
    [58]
    SUN R, LIY, WU S, LIU C T, LIU H G, LIU C M. Enhancement of CO2 capture capacity by modifying limestone with propionic acid[J]. Powder Technol,2013,233:8−14. doi: 10.1016/j.powtec.2012.08.011
    [59]
    张雷, 张力, 闫云飞, 杨仲卿, 郭名女. 掺杂 Ce、Zr 对 CO2钙基吸附剂循环特性的影响[J]. 化工学报,2015,66(2):612−617.

    ZHANG Lei, ZHANG Li, YAN Yun-fei, YANG Zhong-qing, GUO Ming-nü. Effect of Ce, Zr on cyclic performance of CaO-based CO2 sorbents[J]. CIESC J,2015,66(2):612−617.
    [60]
    YI K B, KO C H, PARK J H, KIM J N. Improvement of the cyclic stability of high temperature CO2 absorbent by the addition of oxygen vacancy possessing material[J]. Catal Today,2009,146(1/2):241−247. doi: 10.1016/j.cattod.2008.12.009
    [61]
    YOON H J, LEE K B. Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption[J]. Chem Eng J,2019,355:850−857. doi: 10.1016/j.cej.2018.08.148
    [62]
    李英杰, 赵长遂, 段伦博, 李庆钊, 梁财. 钾钠盐类对钙基 CO2吸附剂循环碳酸化的影响[J]. 中国电机工程学报,2009,29(2):52−57. doi: 10.3321/j.issn:0258-8013.2009.02.010

    LI Ying-jie, ZHAO Chang-sui, DUAN Lun-bo, LI Qing-zhao, LIANG cai. Effect of potassium and sodium salts on cyclic carbonation of calcium-based CO2 sorbent[J]. Proc CSEE,2009,29(2):52−57. doi: 10.3321/j.issn:0258-8013.2009.02.010
    [63]
    LEE C H, CHOI S W, YOON H J, KWON H J, LEE H C. Na2CO3-doped CaO-based high-temperature CO2 sorbent and its sorption kinetics[J]. Chem Eng J,2018,352(15):103−109.
    [64]
    XU Y Q, LUO C, ZHENG Y, DING H R, ZHANG L Q. Macropore-stabilized limestone sorbents prepared by the simultaneous hydration-impregnation method for high-temperature CO2 capture[J]. Energy Fuels,2016,30(4):3219−3226. doi: 10.1021/acs.energyfuels.5b02603
    [65]
    AZIMI B, TAHMASEBPOOR M, SANCHEZ-JIMENEZ P E, PEREJON A, VALVERDE J M. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents[J]. Chem Eng J,2019,358:679−690. doi: 10.1016/j.cej.2018.10.061
    [66]
    LIU F Q, LI W H, LIU B C, LI R X. Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents[J]. J Mater Chem A,2013,1:8037−8044. doi: 10.1039/c3ta11369h
    [67]
    HAN R, GAO J, WEI S, SUN Y L, QIN Y K. Development of highly effective CaO@Al2O3 with hierarchical architecture CO2 sorbents via a scalable limited-space chemical vapor deposition technique[J]. J Mater Chem A,2018,6(8):3462−3470. doi: 10.1039/C7TA09960F
    [68]
    JING J Y, LI T Y, ZHANG X W, WANG S D, FENG J, TURMEL W, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy,2017,199:225−233. doi: 10.1016/j.apenergy.2017.03.131
    [69]
    ZHOU Z, QI Y, XIE M, CHENG Z M, YUAN W K. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chem Eng Sci,2012,74:172−180. doi: 10.1016/j.ces.2012.02.042
    [70]
    LIU W Q, FENG B, Wu Y Q, WANG G X, BARRY J. Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environ Sci Technol,2010,44(8):3093−3097. doi: 10.1021/es903436v
    [71]
    LUO C, ZHENG Y, DING N, WU Q L, BIAN G, ZHENG C G. Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture[J]. Ind Eng Chem Res,2010,49(22):11778−11784. doi: 10.1021/ie1012745
    [72]
    SUN J, GUOY, YANG Y, LI W L, ZHOU Y, ZHANG J B, LIU W Q, ZHAO C W. Mode investigation of CO2 sorption enhancement for titanium dioxide-decorated CaO-based pellets[J]. Fuel,2019,256:1−9.
    [73]
    ZHAO M, SONG Y Q, JI G Z, ZHAO X. Demonstration of polymorphic spacing strategy against sintering: Synthesis of stabilized calcium looping absorbents for hightemperature CO2 sorption[J]. Energy Fuels,2018,32:5443−5452. doi: 10.1021/acs.energyfuels.8b00648
    [74]
    LIU L, HONG D K, GUO X. A study of metals promoted CaO-based CO2 sorbents for high temperature application by combining experimental and DFT calculations[J]. J CO2 Util,2017,22:155−163. doi: 10.1016/j.jcou.2017.09.022
    [75]
    MA X T, LI Y J, YAN X Y, ZHANG W, ZHAO J L, WANG Z Y. Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J]. Chem Eng J,2019,361:235−244. doi: 10.1016/j.cej.2018.12.061
    [76]
    HU Y, LIU W, CHEN H, ZHOU Z J, WANG W Y, SUN J, YANG X W, LI X, XU M H. Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture[J]. Fuel,2016,181:199−206. doi: 10.1016/j.fuel.2016.04.138
    [77]
    GIULIANO A D, GALLUCCI K, KAZI S S, GIANCATERINO F, CARLO A D, COURSON C, MEYER J, FELICE L D. Development of Ni- and CaO-based mono- and bi-functional catalyst and sorbent materials for sorption enhanced steam methane reforming: Performance over 200 cycles and attrition tests[J]. Fuel Process Technol,2019,195:1−16.
    [78]
    SUN H, PARLETT C M A, ISAACS M A, LIU X T, ADWEK G. Development of Ca/KIT-6 adsorbents for high temperature CO2 capture[J]. Fuel,2019,235(1):1070−1076.
    [79]
    PENG W, XU Z, LUO C, ZHAO H B. Tailor-made core-shell CaO/TiO2-Al2O3 architecture as a high-capacity and long-life CO2 sorbent[J]. Environ Sci Technol,2015,49(13):8237−8245. doi: 10.1021/acs.est.5b01415
    [80]
    张明明, 彭云湘, 汪瑾, 李平, 于建国. 三元复合钙基材料CaO-Ca3Al2O6-MgO的合成及其CO2吸附性能[J]. 化工学报,2014,65(1):227−236. doi: 10.3969/j.issn.0438-1157.2014.01.029

    ZHANG Ming-ming, PENG Yun-xiang, WANG Jin, LI Ping, YU Jian-guo. Preparation of ternary composite Ca-based material CaO-Ca3Al2O6-MgO for high-temperature CO2 capture[J]. CIESC J,2014,65(1):227−236. doi: 10.3969/j.issn.0438-1157.2014.01.029
    [81]
    罗聪, 郑瑛, 丁宁, 吴琪珑, 郑楚光. 纳米复合钙基高温CO2吸收剂的合成与性能[J]. 中国电机工程学报,2011,31(8):45−50.

    LUO Cong, ZHENG Ying, DING Ning, WU QI-LONG, ZHENG Chu-guang. Synthesis and performance of a nano synthetic ca-based sorbent for high temperature CO2 capture[J]. Proc CSEE,2011,31(8):45−50.
    [82]
    LIU K, ZHAO B, WU Y, LI F, LI Q, ZHANG J B. Bubbling synthesis and high-temperature CO2 adsorption performance of CaO-based adsorbents from carbide slag[J]. Fuel,2020,269:117481.
    [83]
    TIAN S, JIANG J, YAN F, LI K, CHEN X. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag[J]. Environ Sci Technol,2015,49(12):7464−7472. doi: 10.1021/acs.est.5b00244
    [84]
    HE S, HU Y, HU T, MA Q M, SU H Y, SHAN S Y. Investigation of CaO-based sorbents derived from eggshells and red mud for CO2 capture[J]. J Alloy Compd,2017,701:828−833. doi: 10.1016/j.jallcom.2016.12.194
    [85]
    CHEN H, KHALIL N. Fly-ash-modified calcium-based sorbents tailored to CO2 capture[J]. Ind Eng Chem Res,2017,56(7):1888−1894. doi: 10.1021/acs.iecr.6b04234
    [86]
    CHEN H, WANG F, ZHAO C, NASSER K. The effect of fly ash on reactivity of calcium based sorbents for CO2 capture[J]. Chem Eng J,2017,309:725−737. doi: 10.1016/j.cej.2016.10.050
    [87]
    SCACCIA S, VANGA G, GATTIA D M, STENDARDO S. Preparation of CaO-based sorbent from coal fly ash cenospheres for calcium looping process[J]. J Alloy Compd,2019,801:123−129. doi: 10.1016/j.jallcom.2019.06.064
    [88]
    YAN F, JIANG J, LI K, TIAN S, ZHAO M, CHEN X J. Performance of coal fly ash stabilized, CaO-based sorbents under different carbonation-calcination conditions[J]. ACS Sustainable Chem Eng,2015,3(9):2092−2099. doi: 10.1021/acssuschemeng.5b00355
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1179) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return