Volume 49 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
LEI Lei, XIANG Jian-hua, ZENG Fan-gui, DENG Xiao-peng. High resolution TEM image analysis of anthracite coal microcrystalline structure[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 742-751. doi: 10.1016/S1872-5813(21)60050-6
Citation: LEI Lei, XIANG Jian-hua, ZENG Fan-gui, DENG Xiao-peng. High resolution TEM image analysis of anthracite coal microcrystalline structure[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 742-751. doi: 10.1016/S1872-5813(21)60050-6

High resolution TEM image analysis of anthracite coal microcrystalline structure

doi: 10.1016/S1872-5813(21)60050-6
Funds:  The project was supported by National Natural Science Foundation of China (41572144, U1910204, 41973077), Applied Basic Research Fund of ShanXi Province (201601D021137)
More Information
  • Corresponding author: E-mail: xiangjianhua@tyut.edu.cn
  • Received Date: 2020-12-24
  • Rev Recd Date: 2021-01-27
  • Available Online: 2021-03-30
  • Publish Date: 2021-06-30
  • Four HRTEM images of Yangquan No. 3 anthracite were quantitatively characterized, including fringe length, orientation and stacking distribution. The result indicates that the fringe characteristics are consistent with the coal rank characteristics of anthracite. The fringe of three different microcrystalline regions in image 1 was statistically analyzed. In region 1, the average fringe length is 0.87 nm, the overall fringe orientation distribution is disorderly, but there is still a small range of orderly arrangement between the short fringes and between the long fringes, and the maximum number of stacking layers is 4; In region 3, the fringe length is 1.01 nm on average, the orientation is higher in the range of 135°−180° with a ratio of 62.46%, and the maximum number of stacking layers can reach 6. The fringe distribution characteristic of region 2 is between 1 and 3. Most of the fringes are curved, and there may be heterocyclic rings and aliphatic rings. The FT-IR and 13C NMR data show that the aliphatic structure mainly exists in the form of aliphatic rings, which plays an important role in the process of forming long fringes by short fringes.
  • loading
  • [1]
    BASET Z H, PANCIROV R J, ASHE T R. Organic compounds in coal: Structure and origins[J]. Phys Chem Earth,1980,12:619−630. doi: 10.1016/0079-1946(79)90143-5
    [2]
    MATHEWS J P, CHAFFEE A L. The molecular representations of coal-A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [3]
    张代钧, 鲜学福. 煤大分子结构研究的进展[J]. 重庆大学学报,1993,16(2):58−63.

    ZHANG Dai-jun, XIAN Xue-fu. Advances in the study of macromolecular structure of coal[J]. J Chongqing Univ,1993,16(2):58−63.
    [4]
    LI X M, CAO D Y, ZHANG S R, XING X Y. Study of the XRD parameter evolution of coal of different metamorphism types[J]. Coal Geol Explor,2003,31(3):5−7.
    [5]
    JIANG J Y, YANG W H, CHENG Y P, LIU Z D, ZHANG Q, ZHAO K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel,2019,239:559−572. doi: 10.1016/j.fuel.2018.11.057
    [6]
    NEOMAGUS H W, EVERSON R C, ROBERTS M J. Chemical-structural properties of South African bituminous coals: Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel,2015,158:779−792. doi: 10.1016/j.fuel.2015.06.027
    [7]
    LI Y, CAO X Y, ZHU D Q, CHAPPELL M A, MILLER L F, MAO J D. Characterization of coals and their laboratory-prepared black carbon using advanced solid-state 13C nuclear magnetic resonance spectroscopy[J]. Fuel Process Technol,2012,96:56−64. doi: 10.1016/j.fuproc.2011.12.014
    [8]
    葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析,2017,37(8):2406−2411.

    GE Tao, ZHANG Ming-xu, MA Xiang-mei. XPS and FTIR spectroscopy characterization about the structure of coking coal in Xinyang[J]. Spectrosc Spect Anal,2017,37(8):2406−2411.
    [9]
    WU D, ZHANG H, HU G Q, ZHANG W Y. Fine characterization of the macromolecular structure of huainan coal using XRD, FT-IR, 13C-CP/MAS NMR, SEM, and AFM techniques[J]. Molecules,2020,25(11).
    [10]
    任秀彬, 辛文辉, 张亚婷, 周安宁. 基于HRTEM的低阶烟煤微晶结构研究[J]. 煤炭学报,2015,40(1):242−246.

    REN Xiu-bin, XIN Wen-hui, ZHANG Ya-ting, ZHOU An-ning. Structural alignment of low rank coal using HRTEM technique[J]. J China Coal Soc,2015,40(1):242−246.
    [11]
    王小令, 李霞, 曾凡桂, 边洁晶. 基于HRTEM的煤中不同聚集态结构表征[J]. 煤炭学报,2020,45(2):749−759.

    WANG Xiao-ling, LI Xia, ZENG Fan-gui, BIAN Jie-jing. Characterization of different aggregate structures in coal based on HRTEM[J]. J China Coal Soc,2020,45(2):749−759.
    [12]
    SHARMA A, KYOTANI T, TOMITA A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy Fuels,2001,14(6):1219−1225.
    [13]
    MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of argonne upper freeport coal[J]. Fuel,2012,95:19−24. doi: 10.1016/j.fuel.2011.12.046
    [14]
    SHARMA A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel,1999,78(10):1203−1212. doi: 10.1016/S0016-2361(99)00046-0
    [15]
    WANG S Q, CHEN H, ZHANG X M. Transformation of aromatic structure of vitrinite with different coal ranks by HRTEM in situ heating[J]. Fuel,2020,260:116309. doi: 10.1016/j.fuel.2019.116309
    [16]
    FENG B, BHATIA S K, BARRY J C. Variation of the crystalline structure of coal char during gasification[J]. Energy Fuels,2003,17(3):744−754. doi: 10.1021/ef0202541
    [17]
    CASTRO-MARCANO F, WINANS R E, CHUPAS P. Fine structure evaluation of the pair distribution function with molecular models of the argonne premium coals[J]. Energy Fuels,2012,26:4336−4345. doi: 10.1021/ef300364e
    [18]
    FERNANDEZ-ALOS V, WATSON J K, WAL R V. Soot and char molecular representations generated directly from HRTEM lattice fringe images using fringe3D[J]. Combust Flame,2011,158(9):1807−1813. doi: 10.1016/j.combustflame.2011.01.003
    [19]
    NIEKERK D V, MATHEWS J P. Molecular representations of permian-aged vitrinite-rich and inertinite-rich south african coals[J]. Fuel,2010,89(1):73−82. doi: 10.1016/j.fuel.2009.07.020
    [20]
    YEHLIU K, WAL R L, ANDRÉ L BOEHMAN. Development of an HRTEM image analysis method to quantify carbon nanostructure[J]. Combust Flame,2011,158(9):1837−1851. doi: 10.1016/j.combustflame.2011.01.009
    [21]
    李霞, 曾凡桂, 司加康, 王威, 程丽媛. 不同变质程度煤的高分辨率透射电镜分析[J]. 燃料化学学报,2016,44(3):279−286. doi: 10.3969/j.issn.0253-2409.2016.03.004

    LI Xia, ZENG Fan-gui, SI Jia-kang, WANG Wei, DONG Kui, CHENG Li-yuan. High resolution TEM image analysis of coals with different metamorphic degrees[J]. J Fuel Chem Technol,2016,44(3):279−286. doi: 10.3969/j.issn.0253-2409.2016.03.004
    [22]
    张小东, 孔令菲, 秦勇, 张鹏. 龙口褐煤萃取后微晶结构的XRD与HRTEM研究[J]. 煤炭学报,2013,38(6):1025−1030.

    ZHANG Xiao-dong, KONG Ling-fei, QING Yong, ZHANG Peng. Research on the microcrystalline structure of the fractionally-extracted longkou lignite by XRD and HRTEM[J]. J China Coal Soc,2013,38(6):1025−1030.
    [23]
    ZHANG X M, WANG S Q, CHEN H, GUO Q, LI L, LUO G L. Aromatic structural characterization of different-rank vitrinites: Using HRTEM, XRD and AFM[J]. Polycycl Aromat Comp,2019,(1):1−12.
    [24]
    王绍清, 陈昊, 张小梅, 沙玉明. 不同煤级含树皮体煤HRTEM特征研究[J]. 煤炭技术,2017,36(12):266−268.

    WANG Shao-qing, CHEN Hao, ZHANG Xiao-mei, SHA Yu-ming. HRTEM characteristics of different ranks with coals rich in barkinite[J]. Coal Technol,2017,36(12):266−268.
    [25]
    相建华, 曾凡桂, 李彬, 张莉, 李美芬, 梁虎珍. 成庄无烟煤大分子结构表征与模型及分子模拟[J]. 燃料化学学报,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002

    XIANG Jian-hua, ZENG Fan-gui, LI Bin, ZHANG Li, LI Mei-fen, LIANG Hu-zhen. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002
    [26]
    郝盼云, 孟艳军, 曾凡桂, 闫涛滔, 徐光波. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析,2020,40(3):787−792.

    HAO Pan-yun, MENG Yan-jun, ZENG Fan-gui, YAN Tao-tao, XU Guang-bo. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy[J]. Spectrosc Spect Anal,2020,40(3):787−792.
    [27]
    李霞, 曾凡桂, 王威, 董夔, 程丽媛. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报,2015,40(12):2900−2908.

    LI Xia, ZENG Fan-gui, WANG Wei, DONG Kui, CHENG Li-yuan. FTIR characterization of structural evolution in low-middle rank coals[J]. J China Coal Soc,2015,40(12):2900−2908.
    [28]
    ZHONG Q F, MAO Q Y, ZHANG L Y, XIANG J H, XIAO J, MATHEWS J P. Structural features of qingdao petroleum coke from HRTEM lattice fringes: Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation[J]. Carbon,2018,129:790−802. doi: 10.1016/j.carbon.2017.12.106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (530) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return