Volume 49 Issue 5
May  2021
Turn off MathJax
Article Contents
HOU Meng-ying, LI Gang, JIN Li-jun, HU Hao-quan. Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 582-588. doi: 10.1016/S1872-5813(21)60054-3
Citation: HOU Meng-ying, LI Gang, JIN Li-jun, HU Hao-quan. Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 582-588. doi: 10.1016/S1872-5813(21)60054-3

Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite

doi: 10.1016/S1872-5813(21)60054-3
Funds:  The project was supported by the National Key Research and Development Program of China (2016YFB0600301)
More Information
  • Corresponding author: E-mail: liganghg@dlut.edu.cn
  • Received Date: 2020-12-28
  • Rev Recd Date: 2021-02-10
  • Available Online: 2021-03-30
  • Publish Date: 2021-05-28
  • The phenyl ethyl ether (PEE) and benzyloxybenzene (BOB) were selected as coal-related model compounds, and their catalytic pyrolysis behaviors in the presence of Ni-modified HZSM-5 zeolite were studied in a fixed-bed reactor. Nickel was introduced on HZSM-5 zeolite by wet impregnation. The catalysts were characterized by XRD, FT-IR, H2-TPR and NH3-TPD, and the effect of hydrogen reduction pretreatment on the catalytic performance was studied. NiO/HZSM-5 can significantly improve the yield of phenols in the liquid phase products of the two model compounds. Compared with Ni/HZSM-5, NiO/HZSM-5 exhibits superior pyrolysis conversion of PEE.
  • loading
  • [1]
    MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol, 2000, 62 (2): 119−135.
    [2]
    SCHOBERT H H, SONG C. Chemicals and materials from coal in the 21st century[J]. Fuel,2002,81(1):15−32. doi: 10.1016/S0016-2361(00)00203-9
    [3]
    GRANDA M, BLANCO C, ALVAREZ P, PATRICK J W, MENÉNDEZ R. Chemicals from coal coking[J]. Chem Rev,2014,114(3):1608−1636. doi: 10.1021/cr400256y
    [4]
    POUTSMA M L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal[J]. Energy Fuels,1990,4(2):113−131. doi: 10.1021/ef00020a001
    [5]
    BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel,1978,57(5):269−272. doi: 10.1016/0016-2361(78)90003-0
    [6]
    WANG S, FAN X, ZHENG A, WANG Y, DOU Y, WEI X, ZHAO Y, WANG R, ZONG Z, ZHAO W. Evaluation of atmospheric solids analysis probe mass spectrometry for the analysis of coal-related model compounds[J]. Fuel,2014,117:556−563. doi: 10.1016/j.fuel.2013.09.010
    [7]
    LI G, LI L, SHI L, JIN L, TANG Z, FAN H, HU H. Experimental and theoretical study on the pyrolysis mechanism of three coal-based model compounds[J]. Energy Fuels,2014,28(2):980−986. doi: 10.1021/ef402273t
    [8]
    LI J, LU W, KONG B, CAO Y, QI G, QIN C. Mechanism of gas generation during low-temperature oxidation of coal and model compounds[J]. Energy Fuels,2019,33(2):1527−1539. doi: 10.1021/acs.energyfuels.8b03571
    [9]
    YAN L, BAI Y, ZHAO R, LI F, XIE K. Correlation between coal structure and release of the two organic compounds during pyrolysis[J]. Fuel,2015,145:12−17. doi: 10.1016/j.fuel.2014.12.056
    [10]
    KONG L, LI G, JIN L, HU H. Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor[J]. Fuel Process Technol,2015,129:113−119. doi: 10.1016/j.fuproc.2014.09.009
    [11]
    JARVIS M W, DAILY J W, CARSTENSEN H, DEAN A M, SHARMA S, DAYTON D C, ROBICHAUD D J, NIMLOS M R. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. J Phys Chem A,2011,115(4):428−438. doi: 10.1021/jp1076356
    [12]
    FU Y, GUO Y, ZHANG K. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels,2016,30(3):2428−2433. doi: 10.1021/acs.energyfuels.5b02720
    [13]
    KONG X, BAI Y, YAN L, LI F. Catalytic upgrading of coal gaseous tar over Y-type zeolites[J]. Fuel,2016,180:205−210. doi: 10.1016/j.fuel.2016.03.101
    [14]
    LI G, YAN L, ZHAO R, LI F. Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5[J]. Fuel,2014,130:154−159. doi: 10.1016/j.fuel.2014.04.027
    [15]
    AMIN M N, LI Y, RAZZAQ R, LU X, LI C, ZHANG S. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. J Anal Appl Pyrolysis,2016,118:54−62. doi: 10.1016/j.jaap.2015.11.019
    [16]
    LIU T, CAO J, ZHAO X, WANG J, REN X, FAN X, ZHAO Y, WEI X. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Process Technol,2017,160:19−26. doi: 10.1016/j.fuproc.2017.02.012
    [17]
    GENG H, LI L, LI G, WEI Y, FAN H, JIN L, HU H. Pyrolysis behaviors of coal-related model compounds catalyzed by pyrite[J]. Fuel,2020,262:116526. doi: 10.1016/j.fuel.2019.116526
    [18]
    YAN X, TONG X, WANG J, GONG C, ZHANG M, LIANG L. Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application[J]. J Alloys Compd,2014,593:184−189. doi: 10.1016/j.jallcom.2014.01.036
    [19]
    PEIQING Z, XIANGSHENG W, XINWEN G, HONGCHEN G, LEPING Z, YONGKANG H. Characterization of modified nanoscale ZSM-5 zeolite and its application in the olefins reduction in FCC gasoline[J]. Catal lett, 2004, 92 (1), 63−68.
    [20]
    SZOSTAK R, THOMAS T L. Reassessment of zeolite and molecular sieve framework infrared vibrations[J]. J Catal,1986,101(2):549−552. doi: 10.1016/0021-9517(86)90286-1
    [21]
    ZAKARIA Z Y, LINNEKOSKI J, AMIN N A S. Catalyst screening for conversion of glycerol to light olefins[J]. Chem Eng J,2012,207−208:803−813. doi: 10.1016/j.cej.2012.07.072
    [22]
    VESES A, PUÉRTOLAS B, CALLÉN M S, GARCÍA T. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties[J]. Microporous Mesoporous Mater,2015,209:189−196. doi: 10.1016/j.micromeso.2015.01.012
    [23]
    YUNG M M, STARACE A K, MUKARAKATE C, CROW A M, LESHNOV M A, MAGRINI K A. Biomass catalytic pyrolysis on Ni/ZSM-5: Effects of nickel pretreatment and loading[J]. Energy Fuels,2016,30(7):5259−5268. doi: 10.1021/acs.energyfuels.6b00239
    [24]
    KONG L, LI G, JIN L, HU H. Effects of the oxygen substituent on the pyrolysis of phenyl ethers on a fixed-bed reactor[J]. J Anal Appl Pyrolysis,2015,115:362−369. doi: 10.1016/j.jaap.2015.08.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (322) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return