Volume 49 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
HU Tian-jun, ZHAO Jin, JIA Wen-yu, WANG Ying, JIA Jian-feng. Oxidative calcination of PdCo with unexpected electrocatalytic performance for ethylene glycol oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 835-843. doi: 10.1016/S1872-5813(21)60079-8
Citation: HU Tian-jun, ZHAO Jin, JIA Wen-yu, WANG Ying, JIA Jian-feng. Oxidative calcination of PdCo with unexpected electrocatalytic performance for ethylene glycol oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 835-843. doi: 10.1016/S1872-5813(21)60079-8

Oxidative calcination of PdCo with unexpected electrocatalytic performance for ethylene glycol oxidation

doi: 10.1016/S1872-5813(21)60079-8
Funds:  The project was supported by the Natural Science Foundation of Shanxi Province (201901D111277), the National Natural Science Foundation of China (21571119) and Shanxi Normal University Graduate Science and Technology Innovation Project (2019XSY026).
More Information
  • Pd-based catalysts have been widely used in alkaline fuel cells. However, up to now, the effects of oxidation treatment of Pd-based catalysts on their application in alkaline fuel cells have been rarely reported. In this paper, PdCo nano-metal catalyst was prepared by calcination-oxidation treatment. It was found that the mass specific activity and area specific activity of the resulting PdO-Co3O4 nano-composite for electrocatalytic oxidation of ethylene glycol in alkaline solution were 3.8 and 2.4 times that of commercial Pt/C, respectively. Compared with PdCo nanometals, the mass specific activity and area specific activity of the PdO-Co3O4 nanocomposite for the electrocatalytic oxidation of ethylene glycol in the alkaline solution increased by 1.6 and 1.2 times, respectively. The experimental and calculated results showed that the surface morphology and active center of the catalyst changed after calcination and oxidation treatment. The adsorption energies of O2 and OH on the Co doped PdO (101) surface decreased, which was beneficial to stabilize the intermediate C2H4OHO*. As a result, the energy barrier for the O−H dissociation on the Co-doped surface was reduced. The strong binding of Co doped PdO (101) with ethylene glycol and its intermediate species led to different electrochemical kinetics and reaction path to produce excellent electric catalytic activity. The synergistic effect of PdO and Co3O4 significantly enhanced the interaction between active oxygen and catalyst surface, which not only facilitates the formation of superoxide species on the catalyst surface, but also improves the redox properties of the catalyst and promotes the electrocatalytic oxidation activity of ethylene glycol. The strategy of bi/multi-metallic oxidation proposed in this paper provides a general methodology for the construction of other catalysts.
  • #: contributed equally to this work.
  • loading
  • [1]
    SHEN G, LIU J, WU H B, XU P, LIU F, TONGSH C, JIAO K, LI J, LIU M, CAI M, LEMMON J P, SOLOVEICHIK G, LI H, ZHU J, LU Y. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells[J]. Nat Commun,2020,11(1):1191. doi: 10.1038/s41467-020-14822-y
    [2]
    WANG X X, SWIHART M T, WU G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nat Catal,2019,2(7):578−589. doi: 10.1038/s41929-019-0304-9
    [3]
    KHALAF M M, ABD EL-LATEEF H M, ALNAJJAR A O, MOHAMED I M A. A facile chemical synthesis of CuxNi(1−x)Fe2O4 nanoparticles as a nonprecious ferrite material for electrocatalytic oxidation of acetaldehyde[J]. Sci Rep,2020,10(1):2761. doi: 10.1038/s41598-020-59655-3
    [4]
    DING L X, WANG A L, LI G R, LIU Z Q, ZHAO W X, SU C Y, TONG Y X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation[J]. J Am Chem Soc,2012,134(13):5730−5733. doi: 10.1021/ja212206m
    [5]
    ZHU Y, BU L, SHAO Q, HUANG X. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C−C bond cleavage for ethanol oxidation electrocatalysis[J]. ACS Catal,2019,9(8):6607−6612. doi: 10.1021/acscatal.9b01375
    [6]
    LIANG Z, SONG L, DENG S, ZHU Y, STAVITSKI E, ADZIC R R, CHEN J, WANG J X. Direct 12-Electron oxidation of ethanol on a ternary Au(core)-PtIr(Shell) electrocatalyst[J]. J Am Chem Soc,2019,141(24):9629−9636. doi: 10.1021/jacs.9b03474
    [7]
    AN L, CHEN R. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production[J]. J Power Sources,2016,329:484−501. doi: 10.1016/j.jpowsour.2016.08.105
    [8]
    HU T, WANG Y, LIU Q, ZHANG L, WANG H, TANG T, CHEN W, ZHAO M, JIA J. In-situ synthesis of palladium-base binary metal oxide nanoparticles with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. Int J Hydrogen Energy,2017,42(41):25951−25959. doi: 10.1016/j.ijhydene.2017.08.160
    [9]
    MARINHO V L, ANTOLINI E, GIZ M J, CAMARA G A, POCRIFKA L A, PASSOS R R. Ethylene glycol oxidation on carbon supported binary PtM (M = Rh, Pd an Ni) electrocatalysts in alkaline media[J]. J Electroanal Chem,2021,880:114859. doi: 10.1016/j.jelechem.2020.114859
    [10]
    WANG H, JIANG B, ZHAO T T, JIANG K, YANG Y Y, ZHANG J, XIE Z, CAI W B. Electrocatalysis of ethylene glycol oxidation on bare and bi-modified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation[J]. ACS Catal,2017,7(3):2033−2041. doi: 10.1021/acscatal.6b03108
    [11]
    LIU Y, WEI M, RACITI D, WANG Y, HU P, PARK J H, BARCLAY M, WANG C. Electro-oxidation of ethanol using Pt3Sn alloy nanoparticles[J]. ACS Catal,2018,8(11):10931−10937. doi: 10.1021/acscatal.8b03763
    [12]
    KODIYATH R, RAMESH G V, KOUDELKOVA E, TANABE T, ITO M, MANIKANDAN M, UEDA S, FUJITA T, UMEZAWA N, NOGUCHI H, ARIGA K, ABE H. Promoted C−C bond cleavage over intermetallic TaPt3 catalyst toward low-temperature energy extraction from ethanol[J]. Energy Environ Sci,2015,8(6):1685−1689. doi: 10.1039/C4EE03746D
    [13]
    HAN S H, LIU H M, CHEN P, JIANG J X, CHEN Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation[J]. Adv Energy Mater,2018,8(24):1801326. doi: 10.1002/aenm.201801326
    [14]
    HU T, WANG Y, XIAO H, CHEN W, ZHAO M, JIA J. Shape-control of super-branched Pd-Cu alloys with enhanced electrocatalytic performance for ethylene glycol oxidation[J]. Chem Commun,2018,54(95):13363−13366. doi: 10.1039/C8CC06901H
    [15]
    KUMAR A, MOHAMMADI M M, SWIHART M T. Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures[J]. Nanoscale,2019,11(41):19058−19085. doi: 10.1039/C9NR05835D
    [16]
    YU N F, TIAN N, ZHOU Z Y, SHENG T, LIN W F, YE J Y, LIU S, MA H B, SUN S G. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst[J]. ACS Catal,2019,9(4):3144−3152. doi: 10.1021/acscatal.8b04741
    [17]
    IQBAL M, KIM Y, SAPUTRO A G, SHUKRI G, YULIARTO B, LIM H, NARA H, ALOTHMAN A A, NA J, BANDO Y, YAMAUCHI Y. Tunable concave surface features of mesoporous palladium nanocrystals prepared from supramolecular micellar templates[J]. ACS Appl Mater Interfaces,2020,12(46):51357−51365. doi: 10.1021/acsami.0c13136
    [18]
    SHI Y, LYU Z, ZHAO M, CHEN R, NGUYEN Q N, XIA Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications[J]. Chem Rev,2021,121(2):649−735.
    [19]
    ZAREIE YAZDAN-ABAD M, NOROOZIFAR M, DOUK A S, MODARRESI-ALAM A R, SARAVANI H. Shape engineering of palladium aerogels assembled by nanosheets to achieve a high performance electrocatalyst[J]. Appl Catal B: Environ,2019,250:242−249. doi: 10.1016/j.apcatb.2019.02.064
    [20]
    NIU W, ZHANG W, FIRDOZ S, LU X. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property[J]. Chem Mater,2014,26(6):2180−2186. doi: 10.1021/cm500210u
    [21]
    MA T, LIANG F. Au-Pd nanostars with low Pd content: Controllable preparation and remarkable performance in catalysis[J]. J Phys Chem C,2020,124(14):7812−7822. doi: 10.1021/acs.jpcc.0c00031
    [22]
    LU C L, PRASAD K S, WU H-L, HO J A A, HUANG M H. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity[J]. J Am Chem Soc,2010,132(41):14546−14553. doi: 10.1021/ja105401p
    [23]
    LIU H L, NOSHEEN F, WANG X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property[J]. Chem Soc Rev,2015,44(10):3056−3078. doi: 10.1039/C4CS00478G
    [24]
    LIU P, QIN R, FU G, ZHENG N. Surface coordination chemistry of metal nanomaterials[J]. J Am Chem Soc,2017,139(6):2122−2131. doi: 10.1021/jacs.6b10978
    [25]
    KRITTAYAVATHANANON A, DUANGDANGCHOTE S, PANNOPARD P, CHANLEK N, SATHYAMOORTHI S, LIMTRAKUL J, SAWANGPHRUK M. Elucidating the unexpected electrocatalytic activity of nanoscale PdO layers on Pd electrocatalysts towards ethanol oxidation in a basic solution[J]. Sustainable Energy Fuels,2020,4(3):1118−1125.
    [26]
    ABDEL HAMEED R M. Facile preparation of Pd-metal oxide/C electrocatalysts and their application in the electrocatalytic oxidation of ethanol[J]. Appl Surf Sci,2017,411:91−104. doi: 10.1016/j.apsusc.2017.03.108
    [27]
    BARR M K S, ASSAUD L, BRAZEAU N, HANBÜCKEN M, NTAIS S, SANTINACCI L, BARANOVA E A. Enhancement of Pd catalytic activity toward ethanol electrooxidation by atomic layer deposition of SnO2 onto TiO2 nanotubes[J]. J Phys Chem C,2017,121(33):17727−17736. doi: 10.1021/acs.jpcc.7b05799
    [28]
    WANG Y, ZHANG L M, HU T J. Progress in oxygen reduction reaction electrocatalysts for metal-air batteries[J]. Acta Chim Sin,2015,73(4):316−325.
    [29]
    MUNEEB O, ESTRADA J, TRAN L, NGUYEN K, FLORES J, HU S, FRY-PETIT A M, SCUDIERO L, HA S, HAAN J L. Electrochemical oxidation of polyalcohols in alkaline media on palladium catalysts promoted by the addition of copper[J]. Electrochim Acta,2016,218:133−139. doi: 10.1016/j.electacta.2016.09.105
    [30]
    SCHALOW T, BRANDT B, STARR D E, LAURIN M, SHAIKHUTDINOV S K, SCHAUERMANN S, LIBUDA J, FREUND H-J. Size-dependent oxidation mechanism of supported pd nanoparticles[J]. Angew Chem Int Ed,2006,45(22):3693−3697. doi: 10.1002/anie.200504253
    [31]
    HAO J, PENG S, LI H, DANG S, QIN T, WEN Y, HUANG J, MA F, GAO D, LI F, CAO G. A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors[J]. J Mater Chem A,2018,6(33):16094−16100. doi: 10.1039/C8TA06349D
    [32]
    HU T, WANG Y, ZHANG L, TANG T, XIAO H, CHEN W, ZHAO M, JIA J, ZHU H. Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst[J]. Appl Catal B: Environ,2019,243:175−182. doi: 10.1016/j.apcatb.2018.10.040
    [33]
    ZHANG H, POKHREL S, JI Z, MENG H, WANG X, LIN S, CHANG C H, LI L, LI R, SUN B, WANG M, LIAO Y-P, LIU R, XIA T, MäDLER L, NEL A E. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co3O4 p-type semiconductor in cells and the lung[J]. J Am Chem Soc,2014,136(17):6406−6420. doi: 10.1021/ja501699e
    [34]
    WANG H, XU S, TSAI C, LI Y, LIU C, ZHAO J, LIU Y, YUAN H, ABILD-PEDERSEN F, PRINZ F B, NøRSKOV J K, CUI Y. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science,2016,354(6315):1031. doi: 10.1126/science.aaf7680
    [35]
    XIE S, DAI H, DENG J, LIU Y, YANG H, JIANG Y, TAN W, AO A, GUO G. Au/3DOM Co3O4: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene[J]. Nanoscale,2013,5(22):11207−11219. doi: 10.1039/c3nr04126c
    [36]
    YU A, LEE C, LEE N-S, KIM M H, LEE Y. Highly efficient silver-cobalt composite nanotube electrocatalysts for favorable oxygen reduction reaction[J]. ACS Appl Mater Interf,2016,8(48):32833−32841.
    [37]
    THANGASAMY P, KARUPPIAH S, SATHISH M, MURUGESAN S, S. M S K, RANGASAMY T. Anchoring of ultrafine Co3O4 nanoparticles on MWCNTs using supercritical fluid processing and its performance evaluation towards electrocatalytic oxygen reduction reaction[J]. Catal Sci Technol, 2017, 7 : 1227-1234.
    [38]
    ZHANG G, YANG J, WANG H, CHEN H, YANG J, PAN F. Co3O4−δ Quantum dots as a highly efficient oxygen evolution reaction catalyst for water splitting[J]. ACS Appl Mater Interf,2017,9(19):16159−16167.
    [39]
    ZHUANG Z, SHENG W, YAN Y. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction[J]. Adv Mater,2014,26(23):3950−3955. doi: 10.1002/adma.201400336
    [40]
    WANG W, YANG Y, LIU Y, ZHANG Z, DONG W, LEI Z. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation[J]. J Power Sources,2015,273:631−637. doi: 10.1016/j.jpowsour.2014.09.120
    [41]
    SUN F, ZHANG G, XU Y, CHANG Z, WAN P, LI Y, SUN X. Promoted oxygen reduction activity of Ag/Reduced graphene oxide by incorporated CoOx[J]. Electrochim Acta,2014,132:136−141. doi: 10.1016/j.electacta.2014.03.125
    [42]
    CHENG M, DUAN S, FAN H, SU X, CUI Y, WANG R. Core@shell CoO@Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors[J]. Chem Eng J,2017,327:100−108. doi: 10.1016/j.cej.2017.06.042
    [43]
    SUN Y, GAO S, LEI F, LIU J, LIANG L, XIE Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts[J]. Chem Sci,2014,5(10):3976−3982. doi: 10.1039/C4SC00565A
    [44]
    TAN Q, DU C, SUN Y, YIN G, GAO Y. Pd-around-CeO2−x hybrid nanostructure catalyst: Three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism[J]. J Mater Chem A,2014,2(5):1429−1435. doi: 10.1039/C3TA13843G
    [45]
    NONG S, DONG W, YIN J, DONG B, LU Y, YUAN X, WANG X, BU K, CHEN M, JIANG S, LIU L-M, SUI M, HUANG F. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction[J]. J Am Chem Soc,2018,140(17):5719−5727. doi: 10.1021/jacs.7b13736
    [46]
    SHENG T, LIN X, CHEN Z Y, HU P, SUN S G, CHU Y Q, MA C A, LIN W F. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: A DFT study[J]. Phys Chem Chem Phys,2015,17(38):25235−25243. doi: 10.1039/C5CP02072G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (234) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return