Volume 49 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
LIU Wei, LI Zhuang, ZHANG Shao-peng, JIAN Wei-wei, MA Dan-zhu. Adsorption performance of multi-walled carbon nanotube-SiO2 adsorbent for toluene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 861-872. doi: 10.1016/S1872-5813(21)60090-7
Citation: LIU Wei, LI Zhuang, ZHANG Shao-peng, JIAN Wei-wei, MA Dan-zhu. Adsorption performance of multi-walled carbon nanotube-SiO2 adsorbent for toluene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 861-872. doi: 10.1016/S1872-5813(21)60090-7

Adsorption performance of multi-walled carbon nanotube-SiO2 adsorbent for toluene

doi: 10.1016/S1872-5813(21)60090-7
Funds:  The project was upported by Scientific Research Project of Liaoning Provincial Education Department (L2019026, L2019047), the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (KLIEEE1804), the Natural Science Foundation Guidance and Planning Program of Liaoning Province, China (2019-ZD0065), Liaoning Revitalization Talents Program (XLYC2007143).
More Information
  • In this study, multi-walled carbon nanotube (MWCNTs)-SiO2 composite adsorbents MWCNTs-SiO2-2, MWCNTs-SiO2-4, MWCNTs-SiO2-6 (CS2, CS4, CS6) with molar percentages of MWCNTs of 38%, 52%, and 66% were synthesized using the sol-gel method. The effects of the MWCNT content, temperature (30−60 °C), water vapor concentration (1%−5%), and the number of cycles on the adsorption capacity of toluene were studied, and an adsorption kinetics analysis was performed. The results showed that the adsorption capacity for toluene at 30−60 °C was AC (activated carbon) < CS2 < CS4 < CS6, and the adsorption capacity of CS6 to toluene was up to 50.28 mg/g. For every 10 °C increase in temperature, the penetration time decreased by 10−20 min, and the adsorption content decreased by 3.5% for every 1% increase in water vapor concentration. The phase with the fastest mass transfer rate of toluene could be described by the quasi-secondary adsorption kinetics model, in which intraparticle diffusion plays a major role. The mole percentage of MWCNTs ranged from 38% to 66%, the higher the content was, the easier it was to adsorb toluene. The functional group types of the MWCNTs-SiO2 adsorbent after regeneration did not change, and the adsorbent maintained good adsorption performance.
  • loading
  • [1]
    HU L, PENG Y, WU F, PENG S, JINJUN L, LIU Z. Tubular activated carbons made from cotton stalk for dynamic adsorption of airborne toluene[J]. J Taiwan Inst Chem Eng,2017,80(7):399−405.
    [2]
    NIU H, ZIWEI M O, SHAO M, SIHUA L U, XIE S. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front Environ Sci Eng,2016,10(5):1−11. doi: 10.1007/s11783-016-0828-z
    [3]
    MILLER G, Jr T, HACKETT D. "Photochemical and Industrial Smog" in Living in the Environment, 2nd ed[M]. USA: Nelson, 2011, 20(3): 465-471.
    [4]
    ZHOU K, MA W, ZENG Z, MA X, XU X, GUO Y, LI H, LI L. Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites[J]. Chem Eng J,2019,37(2):1122−1133.
    [5]
    GUPTA K N. Adsorption of volatile organic compounds on granular activated carbon[J]. J Biol Chem,2009,249(3):797−802.
    [6]
    ZHOU J, YOU Y, BAI Z, HU Y, ZHANG J, ZHANG N. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China[J]. Sci Total Environ,2011,409(3):452−459. doi: 10.1016/j.scitotenv.2010.10.022
    [7]
    DINH T V, CHOI I Y, SON Y S, SONG K Y, SUNWOO Y, KIM J C. Volatile organic compounds (VOCs) in surface coating materials: Their compositions and potential as an alternative fuel[J]. J Environ Manage,2016,168(1):157−164.
    [8]
    WANG H, ZHU T, FAN X, NA H. Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon[J]. Carbon,2014,67(2):712−720.
    [9]
    SUI H P, LI X, CONG S, HE L. Removal and recovery of o-xylene by silica gel using vacuum swing adsorption[J]. Chem Eng J,2017,316(5):232−242.
    [10]
    YUAN B, SHAO M, LU S, WANG B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmos Environ,2010,44(15):1919−1926. doi: 10.1016/j.atmosenv.2010.02.014
    [11]
    HUNG C, BAI H, KARTHIK M. Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: a comparative study[J]. Sep Purif Technol,2009,64(3):265−272. doi: 10.1016/j.seppur.2008.10.020
    [12]
    XIA Q, LI Z, XIAO L, ZHANG Z, XI H. Effects of loading different metal ions on an activated carbon on the desorption activation energy of dichloromethane/trichloromethane[J]. J Hazard Mater,2010,179(3):790−794.
    [13]
    SUI H, JIANG P, LI X, LIU Z, LI X, HE L. Binary adsorption equilibrium and breakthrough of n-butyl acetate and p-xylene on granular activated carbon[J]. Ind Eng Chem Res,2019,58(1):8279−8289.
    [14]
    PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Crit Rev Environ Sci Technol,2009,39(1):41−78.
    [15]
    ULRICH B, FRANK T C, MCCORMICK A, CUSSLER E L. Membrane-assisted VOC removal from aqueous acrylic latex[J]. J Membr Sci,2014,452(3):426−432.
    [16]
    SAEID N, JOHN D A, POOYA S. Heel formation during volatile organic compound desorption from activated carbon fiber cloth[J]. Carbon,2016,96(1):131−138.
    [17]
    SUI H, LIU H, AN P, HE L, LI X, CONG S. Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process[J]. J Taiwan Inst Chem Eng,2017,74(3):218−224.
    [18]
    OH K J, PARK D W, KIM S S, PARK S W. Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon[J]. Korean J Chem Eng,2010,27(2):632−638. doi: 10.1007/s11814-010-0079-9
    [19]
    WANG C M, CHUNG T W, HUANG C M, WU H. Adsorption equilibria of acetate compounds on activated carbon, silica gel, and 13X zeolite[J]. J Chem Eng Data,2005,50(3):527−531.
    [20]
    YI F Y, LIN X D, CHEN S X, WEI X Q. Adsorption of VOC on modified activated carbon fiber[J]. J Porous Mater,2009,16(5):521−526. doi: 10.1007/s10934-008-9228-5
    [21]
    UPARE D P, YOON S, LEE C W. Nano-structured porous carbon materials for catalysis and energy storage[J]. Korean J Chem Eng,2011,28(3):731−743. doi: 10.1007/s11814-010-0460-8
    [22]
    JUNFEI B, YILUN H, QIANMING G, XI L, YUYAO L, JIANNING G. Preparation of porous carbon nanotube/carbon composite spheres and their adsorption properties[J]. Carbon,2018,137(2):493−501.
    [23]
    BEDIN K C, MARTINS A C, CAZETTA A L, PEZOTI O, ALMEIDA V C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal[J]. Chem Eng J,2016,286(1):476−484.
    [24]
    HAN Z, KONG S, SUI H, LI X, ZHANG Z. Preparation of carbon-silicon doping composite adsorbent material for removal of VOCs[J]. Mater,2019,12(15):2438−2446. doi: 10.3390/ma12152438
    [25]
    DOU B, LI J, WANG Y, WANG H, MA C, HAO Z. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites[J]. J Hazard Mater,2011,196(3):194−200.
    [26]
    MOHAMMADI A, MOGHADDAS J. Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites[J]. Chem Eng Res Des,2015,94(2):475−484.
    [27]
    KARIIM I, ABDULKAREEM A S, ABUBAKRE O K. Development and characterization of MWCNTs from activated carbon as adsorbent for metronidazole and levofloxacin sorption from pharmaceutical wastewater: Kinetics, isotherms and thermodynamic studies[J]. J Environ Sci Afr,2020,7(19):2268−2276.
    [28]
    JAHANGIRI M, SHAHTAHERI S J, ADI J, RASHIDI A, KAKOOEI H, FORUSHANI A R, GANJILI M A, GHORBANALI A. The adsorption of benzene, toluene and xylenes (BTX) on the carbon nanostructures: the study of different parameters[J]. Fresenius Environ Bull,2011,20(4):1036−1045.
    [29]
    PAN B O, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. J Environ Sci Technol,2008,42(24):9005−9013. doi: 10.1021/es801777n
    [30]
    REN X, CHEN C, NAGATSU M, WANG X. Carbon nanotubes as adsorbents in environmental pollution management: A review[J]. Chem Eng J,2011,170(3):395−410.
    [31]
    PURCENO A D, TEIXEIRA P C, SOUZA J D, FERNANDEZ-OUTON L E, ARDISSON J D, LAGO R M. Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol[J]. J Colloid Interface Sci,2012,379(1):84−88. doi: 10.1016/j.jcis.2012.04.018
    [32]
    YAN T, LI T X, LI H. Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes[J]. Int J Refrig,2014,46(1):165−172.
    [33]
    AGNIHOTRI S, ZHENG Y, MOTA, JOSÉ P B, IVANOV I, KIM P. Practical modeling of heterogeneous bundles of single-walled carbon nanotubes for adsorption applications: Estimating the fraction of open-ended nanotubes in samples[J]. J Phys Chem C,2007,111(37):13747−13755. doi: 10.1021/jp074183o
    [34]
    SU F, LU C, HU S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes[J]. Colloids Surf A,2010,353(1):83−91. doi: 10.1016/j.colsurfa.2009.10.025
    [35]
    ZARE K, GUPTA V K, MORADI O. A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: A review[J]. J Nanostruct Chem,2015,365(5):227−236.
    [36]
    GUPTA V K, KUMAR R, NAYAK A, SALEH T A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review[J]. Adv Colloid Interface Sci,2013,193(2):24−34.
    [37]
    GANGUPOMU R H, SATTLER M L, RAMIREZ D. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities[J]. J Hazard Mater,2016,302(25):362−374.
    [38]
    KONDRATYUK P, YATES J T. Desorption kinetic detection of different adsorption sites on opened carbon single walled nanotubes: The adsorption of n-nonane and CCl4[J]. Chem Phys Lett,2005,410(6):324−329.
    [39]
    WANG G, DOU B, ZHANG Z, LIU H. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon[J]. J Environ Sci,2015,27(4):65−73.
    [40]
    YANG Y Y, JIA F R, JIAN W W, ZHANG S P, MA D Z. Influence of Cr3+ concentration on SO2 removal over TiO2 based multi-walled carbon nanotubes[J]. China Pet Process Petrochem Technol,2019,21(1):26−38.
    [41]
    RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents[J]. Appl Surf Sci,2007,253(14):6032−6040. doi: 10.1016/j.apsusc.2006.12.117
    [42]
    TANDEKER S, NOVAK Z. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity[J]. J Hazard Mater,2009,165(3):1114−1118.
    [43]
    KOSUGE K, KUBO S, KIKUKAWA N, TAKEMORI M. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance[J]. Langmuir,2007,23(6):3095−3102. doi: 10.1021/la062616t
    [44]
    TULAPHOL S, BUNSAN S, KANCHANATIP E. Influence of chlorine substitution on adsorption of gaseous chlorinated phenolics on multi-walled carbon nanotubes embedded in SiO2[J]. Int J Environ Sci Technol,2016,13(6):1465−1474. doi: 10.1007/s13762-016-0984-5
    [45]
    DOĞAN M, ALKAN M. Adsorption kinetics of methyl violet onto perlite[J]. Chemosphere,2003,50(4):517−528. doi: 10.1016/S0045-6535(02)00629-X
    [46]
    NAMASIVAYAM C, SANGEETHA D. Application of coconut coir pith for the removal of sulfate and other anions from water[J]. Desalination,2008,219(1):1−13.
    [47]
    HO Y S, NG J C Y, MCKAY G. Kinetics of pollutant sorption by biosorbents: Review[J]. Sep Purif Rev,2000,29(2):189−232. doi: 10.1081/SPM-100100009
    [48]
    HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Saf Environ Prot,1998,76(4):332−340. doi: 10.1205/095758298529696
    [49]
    KENNEDY L J, VIJAYA J J, SEKARAN G, KAYAIVIZHI K. Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon[J]. J Hazard Mater,2007,149(1):134−143. doi: 10.1016/j.jhazmat.2007.03.061
    [50]
    RUDZINSKI W, PLAZINSKI W. Kinetics of dyes adsorption at the solid-solution interfaces: A theoretical description based on the two-step kinetic model[J]. J Environ Sci Technol,2008,42(7):2470−2475. doi: 10.1021/es7025278
    [51]
    KAVITHA D, NAMASIVAYAM C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J]. Bioresour Technol,2007,98(1):14−21. doi: 10.1016/j.biortech.2005.12.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (234) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return