Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
SUI Bao-kuan, WANG Gang, YUAN Shen-ghua, YANG Wei-ya, LING Feng-xiang, WANG Shao-jun, HE Hai-long. Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. doi: 10.1016/S1872-5813(21)60096-8
Citation: SUI Bao-kuan, WANG Gang, YUAN Shen-ghua, YANG Wei-ya, LING Feng-xiang, WANG Shao-jun, HE Hai-long. Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. doi: 10.1016/S1872-5813(21)60096-8

Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil

doi: 10.1016/S1872-5813(21)60096-8
Funds:  The project was supported by China Petroleum & Chemical Corporation, SINOPEC (119014-3-3)
  • Received Date: 2021-03-24
  • Rev Recd Date: 2021-04-12
  • Available Online: 2021-05-17
  • Publish Date: 2021-08-31
  • Three-dimensionally interconnected macroporous (3DM) Al2O3 was prepared by phase separation. Macropore size of the obtained Al2O3 is 250 nm with a bimodal pore distribution (at about 21 and 250 nm, respectively) and the BET specific surface area of 174 m2/g, as well as the crushing strength of 16.5 N/mm. Ni and Mo on the 3DM catalyst are uniformly dispersed on the surface of the support. The active phases of sulfurized catalyst possess length of 3−10 nm and stacking layers of 1−7. The stacking distribution of active phase more than 4 layers is about 40%, forming a non-uniform active phase structure. Compared with the industrial catalysts, the hydrodemetallization (HDM) rate, hydrodesulfurization (HDS) rate and hydrodecarbonization (HDCCR) rate of the 3DM catalyst increase by 6.2%, 6.0% and 6.8%, respectively. The pore structure, surface properties, active phase structure and their synergistic effect may be the main reasons for the excellent catalytic performance of the 3DM catalyst.
  • loading
  • [1]
    谭青峰, 聂士新, 程涛, 赵元生, 夏恩冬, 崔瑞利, 赵愉生, 姚元勋. PHR系列固定床渣油加氢催化剂的研制开发与工业应用[J]. 化工进展,2018,37(10):3867−3872.

    TAN Qing-feng, NIE Shi-xin, CHENG Tao, ZHAO Yuan-sheng, XIA En-dong, HUO Rui-li, ZHAO Yu-sheng, YAO Yuan-xun. Development and application of PHR fixed-bed residue hydrotreating catalysts[J]. Chem Ind Eng Prog,2018,37(10):3867−3872.
    [2]
    程涛, 赵愉生, 谭青峰. PHR系列固定床渣油加氢脱金属催化剂的研制[J]. 化工进展,2016,35(10):3219−3225.

    CHENG Tao, ZHAO Yu-sheng, TAN Qing-feng, HUO Rui-li. Development of PHR fix-bed residue hydrodemetallization catalysts[J]. Chem Ind Eng Prog,2016,35(10):3219−3225.
    [3]
    YAO S, CHANGFENG Y, CHANGFENG Y. Engineering the hierarchical pore structures and geometries of hydrodemetallization catalyst pellets[J]. Ind Eng Chem Res,2019,58(23):9829−9837. doi: 10.1021/acs.iecr.9b01174
    [4]
    杨卫亚, 凌凤香, 张会成, 王少军, 沈智奇. 具有三维贯通多级孔道结构大孔氧化铝的制备与表征[J]. 燃料化学学报,2018,46(5):558−563. doi: 10.3969/j.issn.0253-2409.2018.05.007

    YANG Wei-ya, LING Feng-xiang, ZHANG Hui-cheng, WANG Shao-jun, SHEN Zhi-qi. Synthesis and characterization of hierarchically porous alumina with three-dimensional interconnected pore structure[J]. J Fuel Chem Technol,2018,46(5):558−563. doi: 10.3969/j.issn.0253-2409.2018.05.007
    [5]
    白秀玲, 马波, 杨卫亚, 凌凤香. 三维贯通大孔氧化铝的制备与表征[J]. 当代化工,2013,42(3):253−255. doi: 10.3969/j.issn.1671-0460.2013.03.003

    BAI Xiu-ling, MA Bo, YANG Wei-ya, LING Feng-xiang. Synthesis and characterization of macroporous Al2O3 with interconnected three-dimensional structure[J]. Contemp Chem Ind,2013,42(3):253−255. doi: 10.3969/j.issn.1671-0460.2013.03.003
    [6]
    王鼎聪. 纳米自组装合成大孔容介孔氧化铝[J]. 中国科学(B辑: 化学),2009,39(5):420−431.

    WANG Ding-cong. Mesoporous aluminium oxide support with large pore volume by nanoself-assembly[J]. Sci China Ser B: Chem,2009,39(5):420−431.
    [7]
    王鼎聪, 刘纪端. 贯通性框架式渣油脱金属催化剂氧化铝载体的研究[J]. 石油炼制与化工,2010,41(1):31−35. doi: 10.3969/j.issn.1005-2399.2010.01.007

    XU Xiao-ming, WANG Ding-cong, YANG Gang, WANG Gang. A research of alumina carrier with penetrating pore structure for asphaltene micelles to diffuse[J]. Petprocess Petrochem,2010,41(1):31−35. doi: 10.3969/j.issn.1005-2399.2010.01.007
    [8]
    张凯, 王鼎聪. 第三次纳米自组装制备大孔主客体催化材料[J]. 中国科学: 化学,2013,43(11):1548−1556.

    ZHANG Kai, WANG Ding-cong. Preparation of macroporous host-guest catalytic material using third nano self-assembly[J]. Sci China Ser B: Chem,2013,43(11):1548−1556.
    [9]
    TAKAHASHI R, ONISHI A, SATOM F. Preparation of bimodal porous alumina using propylene glycol oligomers[J]. J Eur Ceram Soc,2017,125(10):742−746. doi: 10.2109/jcersj2.17062
    [10]
    TOKUDOME Y, FUJITA K, NAKANISHI K, MIURA K, HIRAO K. Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation[J]. Chem Mater,2007,19(14):3393−3398. doi: 10.1021/cm063051p
    [11]
    ABSI-HALABI M, STANISLAUS A, AL-MUGHNI T. Hydroprocessing of vacuum residues: relation between catalyst activity, deactivation and pore size distribution[J]. Fuel,1995,74(8):1211−1215. doi: 10.1016/0016-2361(94)00042-P
    [12]
    LIU T, JU L, ZHOU Y, QIANG W, DING S, ZHOU W, LUO X, JIANG S, TAO X. Effect of pore size distribution (PSD) of Ni-Mo/Al2O3 catalysts on the Saudi Arabia vacuum residuum hydrodemetallization (HDM)[J]. Catal Today,2016,271:179−187. doi: 10.1016/j.cattod.2015.07.045
    [13]
    YANG W, LING F, ZHANG H, WANG S, SHEN Z. Synthesis and characterization of robust γ-alumina monolith with hierarchical pore structure[J]. Chem Lett,2019,48(10):1274−1277. doi: 10.1246/cl.190368
    [14]
    杨卫亚, 王刚, 凌凤香, 隋宝宽, 张会成. 三维贯通结构大孔氧化铝的制备与性质表征[J]. 石油化工,2019,48(7):661−665. doi: 10.3969/j.issn.1000-8144.2019.07.002

    YANG Wei-ya, WANG Gang, LING Feng-xiang, SUI Bao-kuan, ZHANG Hui-cheng. Preparation and characterization of macroporous alumina with three-dimensionally interconnected structure[J]. PetrochemTechnol,2019,48(7):661−665. doi: 10.3969/j.issn.1000-8144.2019.07.002
    [15]
    杨卫亚, 王刚, 凌凤香, 隋宝宽, 张会成, 王少军. 三维贯通大孔氧化铝的孔道改性、表征及转化机制[J]. 燃料化学学报,2019,47(6):745−750. doi: 10.3969/j.issn.0253-2409.2019.06.012

    YANG Wei-ya, LING Feng-xiang, WANG Gang, SUI Bao-kuan, ZHANG Hui-cheng, WANG Shao-jun. Macroporous alumina with three-dimensionally interconnected pore structure: synthesis, characterization and transformation mechanism[J]. J Fuel Chem Technol,2019,47(6):745−750. doi: 10.3969/j.issn.0253-2409.2019.06.012
    [16]
    李波, 邵玲玲. 氧化铝、氢氧化铝的XRD鉴定[J]. 无机盐工业,2008,231(2):54−57. doi: 10.3969/j.issn.1006-4990.2008.02.019

    LI Bo, SHAO Ling-ling. Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorg Chem Int,2008,231(2):54−57. doi: 10.3969/j.issn.1006-4990.2008.02.019
    [17]
    周同娜, 尹海亮, 韩姝娜, 柴永明, 柳云骐, 刘晨光. 不同磷含量对NiMoP/Al2O3加氢处理催化剂的影响[J]. 燃料化学学报,2009,37(3):330−334. doi: 10.3969/j.issn.0253-2409.2009.03.013

    ZHOU Tong-na, YIN Hai-liang, HAN Shu-na, CAI Yong-ming, LIU Yun-qi, LIU Chen-guang. Influences of different phosphorus contents on NiMoP/A12O3 hydrotreating catalysts[J]. J Fuel Chem Technol,2009,37(3):330−334. doi: 10.3969/j.issn.0253-2409.2009.03.013
    [18]
    YING Z, GEVERT B, OTTERSTEDT J. Large-pore catalysts for hydroprocessing of residual oils[J]. Ind Eng Chem Res,1995,34(5):1566−1571. doi: 10.1021/ie00044a008
    [19]
    BAMDADI M, DR. BOZORG A, DR. TAVASOLI A, SAEID S, MAHMOUD A. Synthesis of meso/macroporous γ-alumina via aluminum pellet with controllable porosity: ammonium bicarbonate influences through drying and calcination steps[J]. Chem-Eur J,2019,4(19):5872−5879.
    [20]
    ISHIHARA A. Preparation and reactivity of hierarchical catalysts in catalytic cracking[J]. Fuel Process Technol,2019,194:106−116.
    [21]
    徐景东, 车晓瑞, 王娇红. 孔道结构对渣油加氢脱金属催化剂活性的影响[J]. 工业催化,2018,240(9):57−60. doi: 10.3969/j.issn.1008-1143.2018.09.011

    XU Jing-dong, CHE Xiao-rui, WANG Jiao-hong. Effect of pore structure on activity of resid hydrodemetallization catalysts[J]. Ind Catal,2018,240(9):57−60. doi: 10.3969/j.issn.1008-1143.2018.09.011
    [22]
    ZHANG M, YANG T, ZHAO R, LIU C. Effect of solid-state synthesized alumina properties on the Structure and catalytic performance of NiMo catalyst in hydrodesulfurization[J]. Appl Catal A: Gen,2013,468:327−333. doi: 10.1016/j.apcata.2013.09.008
    [23]
    PARK J, AL-MUTAIRI A, MARAFI A, MOCHIDA I, YOON S-H, MA X. Behaviors of metal compounds during hydrodemetallization of atmospheric residue[J]. J Ind Eng Chem,2016,40:34−39. doi: 10.1016/j.jiec.2016.05.032
    [24]
    GARCIA-MONTOTO V, VERDIER S, MAROUN Z, EGEBERG R, TIEDJE J-L, SANDERSEN S A, ZEUTHEN P, BOUYSSIERE B AL. Understanding the removal of V, Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization[J]. Fuel Process Technol,2020,201:106341−106348. doi: 10.1016/j.fuproc.2020.106341
    [25]
    HERWIG J, TITUS J, KULLMANN J, NICOLE W, THOMAS H, ROGER G, DIRK E. Hierarchically Structured porous spinels via an epoxide-mediated sol–gel process accompanied by polymerization-induced phase separation[J]. ACS Omega,2018,3(1):1201−1212. doi: 10.1021/acsomega.7b01621
    [26]
    SUN M, ZHAO T, LI Z, MA Z, WANG J, LI F. Sol-gel synthesis of macro-mesoporous Al2O3-SiO2-TiO2 monoliths via phase separation Route[J]. Ceram Int,2016,42(14):15926−15932. doi: 10.1016/j.ceramint.2016.07.068
    [27]
    PARKHOMCHUK E V, FEDOTOV K V, SEMEYKINA VS, LYSIKOV A I. Polystyrene microsphere-template method for textural design of alumina – an effective catalyst support For macromolecule conversion[J]. Catal Today,2020,353:180−186. doi: 10.1016/j.cattod.2019.07.027
    [28]
    VIDRUK R, LANDAU M V, HERSKOWITZ M, EZERSKY V, GOLDBOURT A. Control of surface acidity and catalytic activity of γ-Al2O3 by adjusting the nanocrystalline contact interface[J]. J Catal,2011,282(1):215−227. doi: 10.1016/j.jcat.2011.06.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (320) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return