Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
HE Hui-yu, WANG Sheng, JI Lü-lü. Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 484-493. doi: 10.1016/S1872-5813(21)60152-4
Citation: HE Hui-yu, WANG Sheng, JI Lü-lü. Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 484-493. doi: 10.1016/S1872-5813(21)60152-4

Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction

doi: 10.1016/S1872-5813(21)60152-4
Funds:  The project was supported by Natural Science Foundation of Zhejiang Province (LQ20B030001)
More Information
  • Corresponding author: JI Lü-lü (1991-), male, lecturer. E-mail: llji@zstu.edu.cn
  • Received Date: 2021-07-02
  • Rev Recd Date: 2021-08-11
  • Available Online: 2021-09-03
  • Publish Date: 2022-04-26
  • Electrocatalytic reduction of nitrogen (N2) to ammonia (NH3) by renewable energy-derived electricity provides a new route for sustainable development. But this process requires high-efficiency, high-selectivity and high-stability, inexpensive electrocatalysts. Owing to the unique electronic structure and catalytic mechanism, transition metal nitrides (TMNs) have been widely investigated as electrocatalysts for nitrogen reduction reaction (NRR) in recent years. However, to date, copper nitride-based materials are rarely reported for NRR. In this study, a three-dimensional self-supported copper nitride electrode (Cu3N/CF) was prepared by a simple one-step high-temperature nitridation of copper foam (CF). The structure and morphology of Cu3N/CF were systematically characterized and its NRR catalytic performance and stability were evaluated in neutral media. The results show that Cu3N/CF electrode achieves high ammonia generation rate (1.12 × 10−10 mol/(s·cm2) and faradaic efficiency (1.5%) at −0.2 V vs RHE in 0.1 mol/L Na2SO4. In addition, it also exhibits excellent electrocatalytic cycle stability and structural stability.
  • loading
  • [1]
    ZHANG L H, YU F, SHIJU N R. Carbon-based catalysts for selective electrochemical nitrogen-to-ammonia conversion[J]. ACS Sustainable Chem Eng,2021,9(23):7687−7703. doi: 10.1021/acssuschemeng.1c00575
    [2]
    LIU H M, LI W, LIU F, PEI Z X, SHI J, WANG Z J, HE D H, CHEN Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions[J]. ACS Catal,2019,9(6):5245−5267. doi: 10.1021/acscatal.9b00994
    [3]
    SPAULDING D K, WECK G, LOUBEYRE P, DATCHI F, DUMAS P, HANFLAND M. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure[J]. Nat Commun,2014,5(1):1−7.
    [4]
    CUI X, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Adv Energy Mater,2018,8(22):1800369. doi: 10.1002/aenm.201800369
    [5]
    GUO W H, ZHANG K X, LIANG Z B, ZOU R Q, XU Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design[J]. Chem Soc Rev,2019,48(24):5658−5716. doi: 10.1039/C9CS00159J
    [6]
    HIRAKAWA H, HASHIMOTO M, SHIRAISHI Y, HIRAI T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J Am Chem Soc,2017,139(31):10929−10936. doi: 10.1021/jacs.7b06634
    [7]
    KE W, DANIEL S, ZHENG Y. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective[J]. Carbon Resour Convers,2018,1(1):2−31. doi: 10.1016/j.crcon.2018.06.004
    [8]
    LING C Y, NIU X H, LI Q, DU A J, WANG J L. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. J Am Chem Soc,2018,140(43):14161−14168. doi: 10.1021/jacs.8b07472
    [9]
    谢锐, 曹波, 徐迅, 多树旺. 电催化固氮催化剂研究进展[J]. 江西科技师范大学学报,2020,,(6):26−29.

    XIE Rui, CAO Bo, XU Xu, DUO Shu-wang. Research progress of electrocatalytic nitrogen fixation catalyst[J]. J Jiangxi Sci Technol Normal Univ,2020,,(6):26−29.
    [10]
    詹溯, 章福祥. 常温常压电催化合成氨的研究进展[J]. 化学学报,2021,79(2):146−157. doi: 10.6023/A20090412

    ZHAN Su, ZHANG Fu-xiang. Recent progress on electrocatalytic synthesis of ammonia under amibent conditions[J]. Acta Chim Sin,2021,79(2):146−157. doi: 10.6023/A20090412
    [11]
    刘洋. 策略性提升常温常压下电催化合成氨效率的研究[D]. 南宁: 广西大学, 2020.

    LIU Yang. Strategically increasing the efficiency of electrocatalytic ammonia synthesis under ambient contditions[D]. Nanning: Guangxi University, 2020.
    [12]
    WANG J, HUANG B L, JI Y J, SUN M Z, WU T, YIN R G, ZHU X, LI Y Y, SHAO Q, HUANG X Q. A general strategy to glassy M‐Te (M= Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation[J]. Adv Mater,2020,32(11):1907112. doi: 10.1002/adma.201907112
    [13]
    LIU Y Y, WANG W K, ZHANG S B, LI W Y, WANG G Z, ZHANG Y X, HAN M M, ZHANG H M. MoS2 nanodots anchored on reduced graphene oxide for efficient N2 fixation to NH3[J]. ACS Sustainable Chem Eng,2020,8(5):2320−2326. doi: 10.1021/acssuschemeng.9b07679
    [14]
    YANG X, NASH J, ANIBAL J, DUNWELL M, KATTEL S, STAVITSKI E, ATTENKOFER K, CHEN J G, YAN Y S, XU B J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. J Am Chem Soc,2018,140(41):13387−13391. doi: 10.1021/jacs.8b08379
    [15]
    YANG M M, HUO R P, SHEN H D, XIA Q, QIU J S, ROBERTSON A W, LI X, SUN Z Y. Metal-tuned W18O49 for efficient electrocatalytic N2 reduction[J]. ACS Sustainable Chem Eng,2020,8(7):2957−2963. doi: 10.1021/acssuschemeng.9b07526
    [16]
    WANG Y, JIA K, PAN Q, XU Y D, LIU Q, CUI G W, GUO X D, SUN X P. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions[J]. ACS Sustainable Chem Eng,2018,7(1):117−122.
    [17]
    董国文,陈飘,任国平,王超,金曙光,叶捷,周顺. 碳化硼促进Psendomonas stutzeri A1501电催化固氮产氨及机制[J]. 中国环境科学,2021,41(5):2449−2458. doi: 10.3969/j.issn.1000-6923.2021.05.053

    DONG Guo-wen, CHEN Piao, REN Guo-ping, WANG Chao, JIN Shu-guang, YE Jie, ZHOU Shun-gui. Boron carbide promotes the ammonia production by electrocatalytic nitrogen fixation with Psendomonas Stutzeri A1501[J]. China Environ Science,2021,41(5):2449−2458. doi: 10.3969/j.issn.1000-6923.2021.05.053
    [18]
    ZHAO C J, ZHANG S B, HAN M M, ZHANG X, LIU Y Y, CHEN C, WANG G Z, ZHANG H M, ZHAO H J. Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: contribution of pyridinic nitrogen[J]. ACS Energy Lett,2019,4(2):377−383. doi: 10.1021/acsenergylett.8b02138
    [19]
    WU T W, LI X Y, ZHU X J, MOU S Y, LUO Y L, SHI X F, ASIRI A M, ZHANG Y N, ZHENG B Z, ZHAO H T, SUN X P. P-Doped graphene toward enhanced electrocatalytic N2 reduction[J]. Chem Commun,2020,56(12):1831−1834. doi: 10.1039/C9CC09179C
    [20]
    ABGHOUI, Y, GARDEN A L, HLYNSSON V F, BJÖRGVINSDÓTTIR S, ÓLAFSDÓTTIR H, SKÚLASON E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Phys Chem Chem Phys,2015,17(7):4909−4918. doi: 10.1039/C4CP04838E
    [21]
    JIN H Y, LI L Q, LIU X, TANG C, XU W J, CHEN S M, SONG LI, ZHENG Y, QIAO S Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction[J]. Adv Mater,2019,31(32):1902709−1902716. doi: 10.1002/adma.201902709
    [22]
    REN X, CUI G, CHEN L, XIE F Y, WEI Q, TIAN Z Q, SUN X P. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst[J]. Chem Commun,2018,54(61):8474−8477. doi: 10.1039/C8CC03627F
    [23]
    SHENG H, OH M H, OSOWIECKI W T, KIM W Y, ALIVISATOS P, FREI H. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy[J]. J Am Chem Soc,2018,140(12):4363−4371. doi: 10.1021/jacs.8b00271
    [24]
    MCCRORY, C C L, DEVADOSS A, OTTENWAELDER X, LOWE R D, STACK T D P, CHIDSEY C E D. Electrocatalytic O2 reduction by covalently immobilized mononuclear copper (I) complexes: Evidence for a binuclear Cu2O2 intermediate[J]. J Am Chem Soc,2011,133(11):3696−3699. doi: 10.1021/ja106338h
    [25]
    LI C B, MOU S Y, ZHU X J, WANG F Y, WANG Y T, QIAO Y A, SHI X F, LUO Y L, ZHENG B Z, LI QUAN, SUN X P. Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chem Commun,2019,55(96):14474−14477. doi: 10.1039/C9CC08234D
    [26]
    LIU Y Q, HUANG L, ZHU X Y, FANG Y X, DONG S J. Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction[J]. Nanoscale,2020,12(3):1811−1816. doi: 10.1039/C9NR08788E
    [27]
    WANG F, LIU Y P, ZHANG H, CHU P K. CuO/graphene nanocomposite for nitrogen reduction reaction[J]. ChemCatChem,2019,11(5):1441−1447. doi: 10.1002/cctc.201900041
    [28]
    ZHAO R B, GENG Q, CHANG L, WEI P P, LUO Y L, SHI X F, ASIRI A M, LU S Y, WANG Z M, SUN X P. Cu3P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N2 to NH3 conversion under ambient conditions[J]. Chem Commun,2020,56(65):9328−9331. doi: 10.1039/D0CC04374E
    [29]
    YANG DASHUAI, TING CHEN, AND ZHIJIANG WANG. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. J Mater Chem A,2017,5(36):18967−18971. doi: 10.1039/C7TA06139K
    [30]
    JEONG E H, YOO C Y, JUNG C H, PARK J H, PARK Y C, KIM J N, OH S G, WOO Y M, YOON H C. Electrochemical ammonia synthesis mediated by titanocene dichloride in aqueous electrolytes under ambient conditions[J]. ACS Sustainable Chem Eng,2017,5(11):9662−9666. doi: 10.1021/acssuschemeng.7b02908
    [31]
    ZHANG R, ZHANG Y, REN X, CUI G W, ASIRI A M, ZHENG B Z, SUN X P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chem Eng,2018,6(8):9545−9549. doi: 10.1021/acssuschemeng.8b01261
    [32]
    CHEN S, PERATHONER S, AMPELLI C, MEBRAHTU C, SU D S, CENTI G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angew Chem Int Ed,2017,56(10):2699−2703. doi: 10.1002/anie.201609533
    [33]
    LIU Q, ZHANG X X, ZHANG B, LUO Y L CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale,2018,10(30):14386−14389. doi: 10.1039/C8NR04524K
    [34]
    ZHANG L, JI X Q, REN X, MA Y J, SHI X F, TIAN Z Q, ASIRI A M, CHEN L, TANG B, SUN X P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies[J]. Adv Mater,2018,30(28):1800191. doi: 10.1002/adma.201800191
    [35]
    KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chem Commun,2000,17:1673−1674.
    [36]
    ABGHOUI Y, GARDEN A L, HOWALT J G. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments[J]. ACS Catal,2016,6(2):635−646. doi: 10.1021/acscatal.5b01918
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3015) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return