Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
Viviane Santos Pereira, Júlio Nandenha, Andrezza Ramos, Almir Oliveira Neto. Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8
Citation: Viviane Santos Pereira, Júlio Nandenha, Andrezza Ramos, Almir Oliveira Neto. Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8

Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell

doi: 10.1016/S1872-5813(21)60171-8
Funds:  The project was supported by the CAPES, FAPESP (2017/11937-4) and CNPq (302709/2020-7).
More Information
  • Corresponding author: viviane_sp_saopaulo@yahoo.com.br
  • Received Date: 2021-09-16
  • Accepted Date: 2021-10-28
  • Rev Recd Date: 2021-10-26
  • Available Online: 2021-11-20
  • Publish Date: 2022-04-26
  • The Pd-TiO2 electrocatalysts were synthesized via sodium borohydride reduction and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry, chronoamperometry and attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The X-ray diffraction experiments of the Pd-TiO2 showed peaks associated with Pd face-centered cubic (fcc) structure and peaks characteristics of TiO2 (anatase phase) with a tetragonal structure. The TEM images showed that the Pd and TiO2 nanoparticles were well distributed in the carbon support showing some clustered regions with nanoparticle sizes between 7 and 8 nm. Cyclic voltammograms showed an increase in current density values after the glycerol adsorption process. Experiments in alkaline direct glycerol fuel cells at 60 °C showed a higher power density for Pd-TiO2/C (70∶30) in comparison to the commercial Pd/C electrocatalyst indicating that the use of the TiO2 co-catalyst with Pd nanoparticles had a beneficial behavior. This effect can be attributed to the electronic effect or to the bifunctional mechanism. Molecules with high-value added glyceraldehyde, hydroxypyruvate and formate were identified as electrochemical reaction products of glycerol on all prepared electrocatalysts.
  • loading
  • [1]
    ONG C B, KAMARUDIN K S, BASRI S. Direct liquid fuel cells: A review[J]. Int J Hydrogen Energy,2017,42(15):10142−10457.
    [2]
    ANTOLINI E, GONZALEZ R E. Alkaline direct alcohol fuel cells[J]. J Power Sources,2010,195(11):3431−3450. doi: 10.1016/j.jpowsour.2009.11.145
    [3]
    BANJONG J, THERDTHIANWONG A, THERDTHIANWONG S, YONGPRAGAT S, WONGYAO N. High performance alkaline-acid direct glycerol fuel cells for portable power supplies via electrode structure design[J]. Int J Hydrogen Energy,2020,45(3):2244−2256. doi: 10.1016/j.ijhydene.2019.11.041
    [4]
    YAHYA N, KAMARUDIN S K, KARIM A N, MASDAR S M, LOH S K, LIM L K. Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support[J]. Energy Convers Manag,2019,188:120−130. doi: 10.1016/j.enconman.2019.02.087
    [5]
    GERALDES N A, DA SILVA F D, SILVA A G L, SPINACÉ V E, NETO O A, DOS SANTOS C M. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell[J]. J Power Sources,2015,293:823−830. doi: 10.1016/j.jpowsour.2015.06.010
    [6]
    KIM M, LEE C, KO M S, NAM M-J. Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications[J]. J Solid State Chem,2019,270:295−303. doi: 10.1016/j.jssc.2018.11.014
    [7]
    SANTOS C B J, VIEIRA C, CRISAFULLI R, LINARES J J. Promotional effect of auxiliary metals Bi on Pt, Pd, and Ag on Au, for glycerol electrolysis[J]. Int J Hydrogen. Energy,2020,45(47):25658−25671. doi: 10.1016/j.ijhydene.2019.11.225
    [8]
    NANDENHA J, FONTES H E, PIASENTIN M R, FONSECA C F, NETO O A. Direct oxidation of methane at low temperature using Pt/C, Pd/C, Pt/C-ATO and Pd/C-ATO electrocatalysts prepared by sodium borohydride reduction process[J]. J Fuel Chem Technol,2018,46(9):1137−1145. doi: 10.1016/S1872-5813(18)30046-X
    [9]
    DASH S, MUNICHANDRAIAH N. Nanoflowers of PdRu on PEDOT for electrooxidation of glycerol and its analysis[J]. Electrochim Acta,2015,180:339−352. doi: 10.1016/j.electacta.2015.07.020
    [10]
    HOUACHE E S M, SHUBAIR A, SANDOVAL G M, SAFARI R, BOTTON A G, JASEN V P, GONZÁLEZ A E, BARANOVA A E. Influence of Pd and Au on electrochemical valorization of glycerol over Ni-rich surfaces[J]. J Catal,2021,396:1−13. doi: 10.1016/j.jcat.2021.02.008
    [11]
    VILLA A, DIMITRATOS N THAW-C E C, HAMMOND C, PRATI L, HUTCHING J G. Glycerol oxidation using old-containing catalysts[J]. Acc Chem Res.,2015,48:1403−1412. doi: 10.1021/ar500426g
    [12]
    BENIPAL N, QI J, LIU Q, LI W. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion Exchange membrane fuel cells[J]. Appl Catal,2017,210:121−130. doi: 10.1016/j.apcatb.2017.02.082
    [13]
    NANDENHA J, RAMOS C E D, DA SILVA G S, DE SOUZA R F B, FONTES H E, OTTONI C A, NETO A O. Borohydride reduction method for PdIn/C electrocatalysts synthesis towards glycerol electrooxidation under alkaline condition[J]. Eletroanalysis,2021,33(4):1115−1120. doi: 10.1002/elan.202060322
    [14]
    ROSTAMI H, OMRANI A, ROSTAMI A A. On the role of electrodeposited nanostrutured Pd-Co alloy on Au for the electrocatalytic oxidation of glycerol in alcaline media[J]. Int J Hydrogen Energy,2015,40(30):9444−9451. doi: 10.1016/j.ijhydene.2015.05.154
    [15]
    HAN J, KIM Y, KIM W H, JACKSON K H D, LEE D, CHANG H, CHAE J-H, LEE Y-K, KIM J H. Effect of atomic-layer-deposited TiO2 on carbono-supported Ni catalysts for electrocatalytic glycerol oxidation in alkaline media[J]. Electrochem Commun,2017,83:46−50. doi: 10.1016/j.elecom.2017.08.023
    [16]
    SILVA M C J, BUZZO S G, DE SOUZA B F R, SPINACÉ V E, NETO O A, ASSUMPÇÃO T M H M. Enhanced eletrooxidation of ethanol using Pd/C + TiO2 electrocatalysts in alkaline media[J]. Electrocatalysis,2015,6:86−91. doi: 10.1007/s12678-014-0224-z
    [17]
    HAN J, KIM Y, JACKSON K H D, JEONG E-K, CHAE J-H, LEE Y-K, KIM J-H. Role of Au-TiO2 interfacial sites in enchancing the electrocatalytic glycerol oxidation performance[J]. Electrochem Commun,2018,96:16−21. doi: 10.1016/j.elecom.2018.09.004
    [18]
    DE SOUZA M F, DE SOUZA B F R, BATISTA L B, DOS SANTOS C M, FONSECA C F, NETO, O A, NANDENHA J. Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC[J]. Res Chem Intermed,2020,46:2481−2496. doi: 10.1007/s11164-020-04102-1
    [19]
    DELGADO A J, CLAVER C, CASTILLÓN S, CURULLA-FERRÉ D, ORDOMSKY V V, GODARD C. Fisher-Tropsch synthesis catalyzed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction[J]. Appl Catal A: Gen,2016,513:39−46. doi: 10.1016/j.apcata.2015.12.019
    [20]
    KIRKLAND A I, HUTCHISON J L. Nanocharacterization[M]. RSC Publishing: Cambridge, 2007, 304-307.
    [21]
    RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalysts for methanol oxidation[J]. J Catal,1995,154(1):98−106. doi: 10.1006/jcat.1995.1151
    [22]
    ANTONIASSI M R, SILVA M C J, NETO O A, SPINACÉ V E. Synthesis of Pt+SnO2/C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell[J]. Appl Catal,2017,218:91−100. doi: 10.1016/j.apcatb.2017.06.031
    [23]
    OTTONI A C, DE SOUZA R R, DA SILVA S G, SPINACÉ V E, DE SOUZA B F R, NETO O A. Performance of Pd electrocatalyst supported on a physical mixture Indium tin oxide-carbon for glycerol electro-oxidation in alkaline media[J]. Electroanalysis,2017,29:960−964. doi: 10.1002/elan.201600569
    [24]
    NETO O A, NANDENHA J, DE SOUZA B F R, BUZZO S G, SILVA M C J, SPINACÉ V E, ASSUMPÇÃO T M H M. Anodic oxidation of formic acid on PdAuIr/C-Sb2O5. SnO2 electrocatalysts prepared by borohydride reduction[J]. J Fuel Chem Technol,2014,42(7):851−857. doi: 10.1016/S1872-5813(14)60037-2
    [25]
    GERALDES N A, SILVA F D, SILVA M C J, SOUZA B F R, SPINACÉ V E, NETO O A, LINARDI M, SANTOS C M. Glycerol electrooxidation in alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation[J]. J Braz Chem Soc,2014,25(5):831−840.
    [26]
    SIMÕES M, BARANTON S, COUTANCEAU C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Appl Catal,2010,93(3/4):354−362. doi: 10.1016/j.apcatb.2009.10.008
    [27]
    GRDÉN M, CZERWINSKI A. EQCM studies on Pd-Ni alloy oxidation in basic solution[J]. J Solid State Electrochem,2008,12:375−385. doi: 10.1007/s10008-007-0452-8
    [28]
    ZHIANI M, ROSTAMI H, MAJIDI S, KARAMI K. Bis (dibenzylidene acetone) palladium (O) catalysts for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell[J]. Int J Hydrogen Energy,2013,38(13):5435−5441. doi: 10.1016/j.ijhydene.2012.09.001
    [29]
    WINIWARTER A, SILVIOLI L, SCOTT B S, RASMUSSEN-E K, SARIÇ M, TRIMARCO B D, VESBORG K C P, MOSES G P, STEPHENS L E I, SEGER B, ROSSMEISL J, CHORKENDORFF I. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium[J]. Energy Environ Sci,2019,12(3):1055−1067. doi: 10.1039/C8EE03426E
    [30]
    GOMES F J, GARCIA C A, GASPAROTTO S H L, DE SOUZA E N, FERREIRA B E, PIRES C, FILHO-TREMILIOSI G. Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study[J]. Electrochim Acta,2014,144:361−368. doi: 10.1016/j.electacta.2014.08.035
    [31]
    ZALINEEVA A, BARANTON S, COUTANCEAU C. How do Bi-modified palladium nanoparticles work toward glycerol electrooxidation? An in situ FTIT study[J]. Electrochim Acta,2015,176:705−717. doi: 10.1016/j.electacta.2015.07.073
    [32]
    NANDENHA J, NAGAHAMA F H L, YAMASHITA Y J, FONTE H E, AYOUB S M J, DE SOUZA B F R, FONSECA C F, NETO O A. Activation of methane on PdZn/C electrocatalysts in an acidic electrolyte at low temperatures[J]. Int J Electrochem Sci,2019,14:10819−10834.
    [33]
    LAI L, HUANG G, WANG X WENG J. Preparation of Pt nanoparticle-loaded three-dimensional Fe3O4/carbon with high electro-oxidation activity[J]. Carbon,2011,49(5):1581−1587. doi: 10.1016/j.carbon.2010.12.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2873) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return