Volume 50 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
BAI Ji-feng, CHENG Man-fang, LU Hong-zhu, HOU Ming-bo, YANG Yu, WANG Jing-yun, ZHOU Ming-dong. In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 418-427. doi: 10.1016/S1872-5813(21)60176-7
Citation: BAI Ji-feng, CHENG Man-fang, LU Hong-zhu, HOU Ming-bo, YANG Yu, WANG Jing-yun, ZHOU Ming-dong. In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 418-427. doi: 10.1016/S1872-5813(21)60176-7

In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands

doi: 10.1016/S1872-5813(21)60176-7
Funds:  The project was supported by Liaoning Revitalization Talents Program (XLYC1902085), Natural Science Foundation of Liaoning Province (20170540590) and PetroChina Innovation Foundation (2018D-5007-0507).
  • Received Date: 2021-04-28
  • Rev Recd Date: 2021-10-12
  • Available Online: 2021-11-13
  • Publish Date: 2022-04-26
  • To synthesize simple and efficient catalysts and their application in catalytic conversion of biomass platform compounds to prepare high value-added chemicals has always been the focus of researchers. In this paper, a catalyst composed of iron, manganese, copper and Schiff base ligand derived from amantadine salicylaldehyde was in-situ constructed to catalyze the selective oxidation of 5-hydroxymethylfurfural (HMF) to prepare 5-formyl-2-furancarboxylic acid (FFCA). The ligands and complexes were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and single crystal diffraction, and the reaction conditions such as oxidation reaction time, reaction temperature, molar ratio of MnCl2·4H2O to ligand, oxidant and catalyst dosage, etc, were optimized. Under the optimized conditions, 100% conversion of HMF and the FFCA with a yield of 52.1% can be obtained. Finally, on the basis of the reaction results, the HMF oxidation reaction process catalyzed by Mn metal complexes was analyzed.
  • loading
  • [1]
    MURPHY J D, BROWNE J, ALLEN E, GALLAGHER C. The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel[J]. Renewable Energy,2013,55(1):474−479.
    [2]
    LICHTENTHALER F W, PETER S. Carbohydrates as green raw materials for the chemical industry[J]. Comptes Rendus Chimie,2004,7(2):65−90. doi: 10.1016/j.crci.2004.02.002
    [3]
    SIANKEVICH S, SAVOGLIDIS G, FEI Z. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under mild conditions[J]. J Catal,2014,315(6):67−74.
    [4]
    CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev,2007,107(6):2411−2502. doi: 10.1021/cr050989d
    [5]
    ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfural from fructose[J]. Dumesic Sci,2006,312(5782):1933−1937. doi: 10.1126/science.1126337
    [6]
    ZHAO H, HOLLADAY J E, BROWN H, ZHANG Z C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597−1600. doi: 10.1126/science.1141199
    [7]
    SUN Z, CHENG M X, LI Z J, TIAN J, WANG X H. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis- surfactant-combined heteropolyacid catalyst[J]. Chem Commun,2011,47(7):2176−2178. doi: 10.1039/c0cc04444j
    [8]
    STÅHLBERG T, FU W, WOODLEY J M, RIISAGER A. Synthesis of 5-(hydroxymethyl) furfural in ionic liquids: Paving the way to renewable chemicals[J]. ChemSusChem,2011,4(4):451−458. doi: 10.1002/cssc.201000374
    [9]
    LAN J, LIN J, CHEN Z, YIN G. Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts[J]. ACS Catal,2015,5(4):2035−2041. doi: 10.1021/cs501776n
    [10]
    PAL P, SARAVANAMURUGAN S. Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts[J]. ChemSusChem,2018,12(1):145−163.
    [11]
    ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives[J]. ACS Catal,2015,5(11):6529−6544. doi: 10.1021/acscatal.5b01491
    [12]
    ZHANG C, CHANG X, ZHU L, XING Q, YOU S, QI W, SU R, HE Z. Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF[J]. Int J Biol Macromol,2019,128(1):132−139.
    [13]
    GANDINI A, SILVESTRE A J D, NETO C P, SOUSA A F, GOMES M, The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources[J] J Polym Sci Pol Chem, 2009, 47 (1) 295−298.
    [14]
    XU J J, ZHU Z G, YUAN Z L, SUN T, ZHAO Y C, REN W Z, ZHANG Z H, LÜ H Y. Selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancar- boxylic acid over a Fe-Anderson type catalyst[J]. J Taiwan Inst Chem E,2019,104:8−15.
    [15]
    ZHU Y, ZHANG Y, CHENG L, ISMAEL M, FENG Z, WU Y. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation[J]. Adv Powder Technol,2020,31(3):1148−1159. doi: 10.1016/j.apt.2019.12.040
    [16]
    PAL P, KUMAR S, DEVI M M, SARAVANAMURUGAN S. Oxidation of 5-hydroxymethylfurfural to 5-formyl furan-2-carboxylic acid by non-precious transition metal oxide-based catalyst[J]. J Supercrit Fluids,2020,160(1):104−812.
    [17]
    VENTURA M, ARESTA M, DIBENEDETTO A. Selective aerobic oxidation of 5-(hydroxymethyl) furfural to 5-formyl-2-furancarboxylic acid in water[J]. ChemSusChem,2016,9(10):1096−1100. doi: 10.1002/cssc.201600060
    [18]
    VENTURA M, LOBEFARO F, GIGLIO E, DISTASO M, NOCITO F, DIBENEDETTO A. Selective aerobic oxidation o 5-hydroxymethylfurfural to 2, 5-diformylfuran or 2-formyl-5-furancarboxylic acid in water by using MgO·CeO2 mixed oxides as catalysts[J]. ChemSusChem,2018,11(8):1305−1315. doi: 10.1002/cssc.201800334
    [19]
    WANG H B. Synthesis, characterization and antibacterial activity of Schiff base containing adamantyl and Its Zinc complex[D]. Liaoning: Liaoning University, 2012.
    [20]
    JIN X D, WANG W C, FENG X X, BU L C, TONG J, ZHANG P, REN J K, ZHAO B X. Synthesis, characterization, crystal structure, and electrochemical property of copper(II) complexes with Schiff bases derived from 5-halogenated salicylaldehyde and amantadine[J]. J Coord Chem,2017,43(11):787−794. doi: 10.1134/S1070328417110033
    [21]
    SHELDRICK G M. SHELXT-integrated space-group and cry-synthesis determination[J]. Acta Crystallogr A,2015,71(1):3−8.
    [22]
    JIN X D, KOU L, LIANG H M, TONG J, ZHANG P, HAN G C, REN J K, ZHAO B X. Syntheses and crystal structures of three copper(II) complexes with bulky Schiff bases derived from rimantadine[J]. J Coord Chem,2016,69(22):3309−3320. doi: 10.1080/00958972.2016.1228910
    [23]
    KIM M, SU Y Q, FUKUOKA A, HENSEN E J M, NAKAJIMA K. Aerobic oxidation of 5-(hydroxymethyl) furfural cyclic acetal enables selective furan-2, 5-dicarboxylic acid formation with CeO2-supported gold catalyst[J]. Angew Chem Int Ed,2018,57(27):8235−8239. doi: 10.1002/anie.201805457
    [24]
    RAO V K, PETER S. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today, 2012, 195(1): 144−154.
    [25]
    REN Y S, LIU B, ZHANG Z H, LIN J T. Silver-exchanged heteropolyacid catalyst (Ag1H2PW): An efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose[J]. J Ind Eng Chem,2015,21(25):1127−1131.
    [26]
    JU E G, DONG K, CHEN Z W, LIU Z, LIU C Q, HUANG Y Y, WANG Z Z, PU F, REN J S, QU X G. Copper(ii) -graphitic carbon nitride triggered synergy: Improved ros generation and reduced glutathione levels for enhanced photodynamic therapy[J]. Angew Chem Int Ed,2016,55(38):11467−11471. doi: 10.1002/anie.201605509
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (344) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return