Volume 50 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHAO Chao-yue, LI Feng-hai, MA Ming-jie, LI Yang, ZHAO Wei, ZHANG Xu-jing, FANG Yi-tian. Modification of ash fusion behavior of high ash fusion temperature (AFT) coal by textile dyeing sludge addition and its mechanism[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 703-713. doi: 10.1016/S1872-5813(21)60189-5
Citation: ZHAO Chao-yue, LI Feng-hai, MA Ming-jie, LI Yang, ZHAO Wei, ZHANG Xu-jing, FANG Yi-tian. Modification of ash fusion behavior of high ash fusion temperature (AFT) coal by textile dyeing sludge addition and its mechanism[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 703-713. doi: 10.1016/S1872-5813(21)60189-5

Modification of ash fusion behavior of high ash fusion temperature (AFT) coal by textile dyeing sludge addition and its mechanism

doi: 10.1016/S1872-5813(21)60189-5
Funds:  The project was supported by the Natural Science Foundation of China (21875059), and the Natural Science Foundations of Shandong Province, China (ZR2018MB037).
More Information
  • Corresponding author: E-mail: hzlfh@163.com
  • Received Date: 2021-11-18
  • Accepted Date: 2022-01-06
  • Rev Recd Date: 2022-01-05
  • Available Online: 2022-01-28
  • Publish Date: 2022-06-25
  • To address the slagging problem during coal entrained-flow bed (EFB) gasification, the influences of textile dyeing sludge (TDS) addition on the fusing characteristics of high ash fusion temperature (AFT) coal were explored under a reducing atmosphere. And the change mechanisms were investigated by X-ray diffraction, Fourier Transform Infrared Spectroscopy (FT-IR) and FactSage calculation. The results showed that the flow temperature of high ash fusion temperature (AFT) coal decreased below 1380 °C when the TDS addition reached 20%−25%, which met the requirements of liquid-slag removal for EFB gasification. With the content of TDS increasing, the formations of low-melting minerals (e.g., hercynite, anorthite, and albite) decreased AFT. The bridging oxygen bonds of the network structure were destroyed by metal ions (e.g., Fe2+, Ca2+, Na+), formation of much non-bridged oxygen (NBO) bonds relaxed the silicate network, thus decreasing the AFT. The formations of NBO bonds were confirmed by gradual decreases in the peak strengths of Si−O−Si and Si−O−Al bonds and intensified the vibration of Fe−O and Si−O−M ( M: Ca2+ or Na+) bonds. FactSage calculation results were in good agreement with the experimental ash fusion behavior.
  • loading
  • [1]
    CAO X, KONG L X, BAI J, ZHAO H, GE Z F, LI H Z, BAI Z Q, LI W. Effect of water vapor on coal ash slag viscosity under gasification condition[J]. Fuel,2019,227:18−27.
    [2]
    DUAN W J, YU Q, LIU J X, HOU L M, XIE H Q, WANG X K, QIN Q. Characterizations of the hot blast furnace slag on coal gasification reaction[J]. Appl Therm Eng,2016,98:936−943. doi: 10.1016/j.applthermaleng.2015.12.029
    [3]
    LI X M, ZHI L F, SHI W J, KONG L X, BAI J, YU J L, MARKUS R, STEFAN G, BERND M, LI W. Effect of K2O/Na2O on fusion behavior of coal ash with high silicon and aluminum level[J]. Fuel,2020,265:116964. doi: 10.1016/j.fuel.2019.116964
    [4]
    WAN D C, LIANG Q F, GONG X, LIU H F, LIU X. Influence of coal blending on ash fusion property and viscosity[J]. Fuel,2017,189:15−22. doi: 10.1016/j.fuel.2016.10.050
    [5]
    FAN G X, ZHANG M Y, PENG W J, ZHOU G L, DENG L J, CHAMG L P, CAO Y J,  LI P. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes[J]. J Clean Prod,2021,286:124943. doi: 10.1016/j.jclepro.2020.124943
    [6]
    LI F H, FAN H L, WANG X C, WANG T, FANG Y T. Influences of phosphorus on ash fusion characteristics of coal and its regulation mechanism[J]. Fuel,2019,239:1338−1350. doi: 10.1016/j.fuel.2018.11.004
    [7]
    MA X W, LI F H, MA M J, HUANG S X, JI S H, FANG Y T. Regulation of ash fusibility characteristics for high-ash-fusion-temperature coal by bean straw addition[J]. Energy Fuels,2018,32(6):6678−6688. doi: 10.1021/acs.energyfuels.8b01013
    [8]
    LI F H, LI Y, ZHAO C Y, FAN H L, XU M L, GUO Q Q, GUO M X, WANG Z Q, HUANG J J, FANG Y T. Investigation on ash-fusion characteristics of livestock manure and low-rank coals[J]. Energy Fuels,2020,34:5804−5812. doi: 10.1021/acs.energyfuels.0c00587
    [9]
    HE C, ILYUSHECHKIN A, BAI J, HLA S S, KONG L X, LI W. Viscosity and crystallisation behaviour of coal ash slag from the primary phase of anorthite[J]. Fuel Process Technol,2021,213:106680. doi: 10.1016/j.fuproc.2020.106680
    [10]
    JAKUB L, MAREK B, MARTIN L, HANA L, PAVEL M, PATRIK E. An overview of slagging and fouling indicators and their applicability to biomass fuels[J]. Fuel Process Technol,2021,217:106804. doi: 10.1016/j.fuproc.2021.106804
    [11]
    XU J, SONG X D, YU G S, DU C H. Investigating the effect of flux on ash fusibility of high-calcium coal[J]. ACS Omega,2020,5(20):11361−11368. doi: 10.1021/acsomega.0c00320
    [12]
    WANG H, CHENG L H, PU J L, ZHAO J G. Melting characteristics of coal ash and properties of fly ash to understand the slag formation in the shell gasifier[J]. Energy Fuels,2021,6(24):16066−16075.
    [13]
    MA X W, LI F H, MA M J, FANG Y T. Fusion characteristics of blended ash from Changzhi coal and biomass[J]. J Fuel Chem Technol,2018,46(02):129−137. doi: 10.1016/S1872-5813(18)30007-0
    [14]
    YAO X W, ZHENG Y, ZHOU H D, XU K, XU Q W, LI L. Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite[J]. Renew Energy,2020,147:2309−2320. doi: 10.1016/j.renene.2019.10.047
    [15]
    XIE L C, LI F H, XUE Z M, XU L, MA X X. Influence of coal blending on ash fusion characteristics for coal with high ash fusion temperature[J]. J Fuel Chem Technol,2016,44(12):1430−1439.
    [16]
    WANG Y B, LI L Y, AN Q W, WANG M, TAN H Z, LI P, PENG J H. Effect of Ca3(PO4)2 additive on the slagging behavior during the cofiring of high-sodium coal and iron-rich coal[J]. Fuel Process Technol,2021,222:106965. doi: 10.1016/j.fuproc.2021.106965
    [17]
    DAI X, BAI J, HUANG Q, LIU Z, BAI X J, LIN C T, LI W, GUO W, WEN X D, DU S Y. Coal ash fusion properties from molecular dynamics simulation: the role of calcium oxide[J]. Fuel,2018,216:760−767. doi: 10.1016/j.fuel.2017.12.048
    [18]
    WANG J J, GUO Q H, WEI J T, LIU X, WANG X J, YU G S. Understanding the influence of iron on fluidity and crystallization characteristics of synthetic coal slags[J]. Fuel Process Technol,2020,209:106532. doi: 10.1016/j.fuproc.2020.106532
    [19]
    HU S H, ZHANG J K, CEN K F, ZHOU H. Ash deposition characteristics during co-combustion of coal and sawdust[J]. J Fuel Chem Technol,2020,48(9):1055−1062.
    [20]
    XIAO H X, LI F H, LIU Q R, JI S H, FAN H L, XU M L, GUO Q Q, MA M J, MA X W. Modification of ash fusion behavior of coal with high ash fusion temperature by red mud addition[J]. Fuel,2017,192:121−127. doi: 10.1016/j.fuel.2016.12.012
    [21]
    MA X W, LI F H, MA M J, FANG Y T. Investigation on blended ash fusibility characteristics of biomass and coal with high silica-alumina[J]. Energy Fuels,2017,31:7941−7951. doi: 10.1021/acs.energyfuels.7b01070
    [22]
    ISAM J, IDOWU A, SHABBAR R, CHAOUKI G. A review of recent developments and future prospects in gasification systems and their modeling[J]. Renewable Sustainable Energy Rev,2021,138:110505. doi: 10.1016/j.rser.2020.110505
    [23]
    RAN C M, LIU Y, SIDDIQUI A R, SIYAL A A, MAO X, KANG Q H, FU J, AO W Y, DAI J J. Pyrolysis of textile dyeing sludge in fluidized bed: Analysis of products, and migration and distribution of heavy metals[J]. J Clean Prod,2019,241:118308. doi: 10.1016/j.jclepro.2019.118308
    [24]
    ZHUO Z X, LIU J Y, SUN S Y, SUN J, KUO J H, CHANG K L, FU J W, Wang Y J. Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres[J]. Appl Therm Eng,2017,111:87−94. doi: 10.1016/j.applthermaleng.2016.09.089
    [25]
    LIU Y, RAN C M, SIYAL A A, SONG Y M, JIANG Z H, DAI J J, CHTAEVA P, FU J, AO W Y, Deng Z Y, ZHANG T H. Comparative study for fluidized bed pyrolysis of textile dyeing sludge and municipal sewage sludge[J]. J Hazard Mater,2020,396:122619. doi: 10.1016/j.jhazmat.2020.122619
    [26]
    ZHANG J H, ZOU H H, LIU J Y, EVRENDILEK F, XIE W M, HE Y, BUYUKADA M. Comparative (co-)pyrolytic performances and by-products of textile dyeing sludge and cattle manure: Deeper insights from Py-GC/MS, TG-FTIR, 2D-COS and PCA analyses[J]. J Hazard Mater,2021,401:23276.
    [27]
    XIE C D, LIU J Y, BUYUKADA M, EVRENDILEK F, SAMAKSAMAN U, KUO J H, OZYURT O. Parametric assessment of stochastic variability in co-combustion of textile dyeing sludge and shaddock peel[J]. Waste Manage,2019,96:128−135. doi: 10.1016/j.wasman.2019.07.010
    [28]
    XIE W H, HUANG J L, LIU J Y, ZHAO Y J, CHANG K L, KUO J H, HE Y, SUN J, ZHENG L, XIE W M, SUN S Y, BUYUKADA M, EVRENDILEK F. Assessing thermal behaviors and kinetics of (co-)combustion of textile dyeing sludge and sugarcane bagasse[J]. Appl Therm Eng,2018,131:874−883. doi: 10.1016/j.applthermaleng.2017.11.025
    [29]
    SANSANIWAL S K, PAL K, ROSEN M A, TYAGI S. K. Recent advances in the development of biomass gasification technology: A comprehensive review[J]. Renewable Sustainable Energy Rev,2017,72:363−384. doi: 10.1016/j.rser.2017.01.038
    [30]
    WANG M L, MAO M M, ZHANG M, WEN G D, YANG Q W, SU B G, REN Q L. Highly efficient treatment of textile dyeing sludge by CO2 thermal plasma gasification[J]. Waste Manage,2019,90:29−36. doi: 10.1016/j.wasman.2019.04.025
    [31]
    FOLGUERAS M B, ALONSO M, FOLGUERAS J R. Effect of sludge addition to coal on Na, K and S volatilisation in ashing process and ash fusibility[J]. Fuel Process Technol,2015,138:714−723. doi: 10.1016/j.fuproc.2015.07.013
    [32]
    FOLGUERAS M B, ALONSO M, FOLGUERAS J R. Modification of lignite ash fusion temperatures by the addition of different types of sewage sludge[J]. Fuel Process Technol,2015,131:348−355. doi: 10.1016/j.fuproc.2014.12.002
    [33]
    SCHWITALLA D, REINMÖLLER M, FORMAN C, WOLFERSDORF C, GOOTZ M, BAI J, GUHLA S, NEUROTHC M, MEYER B. Ash and slag properties for co-gasification of sewage sludge and coal: An experimentally validated modeling approach[J]. Fuel Process Technol,2018,175:1−9. doi: 10.1016/j.fuproc.2018.02.026
    [34]
    WANG T, FU T M, CHEN K, CHENG R S, CHEN S, LIU J X, MEI M, LI J P, XUE Y J. Co-combustion behavior of dyeing sludge and rice husk by using TG-MS: Thermal conversion, gas evolution, and kinetic analyses[J]. Bioresour Technol,2020,311:123527. doi: 10.1016/j.biortech.2020.123527
    [35]
    SONG Y Y, HU J W, LIU J Y, BUYUKADA M, EVRENDILEK F. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: Dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms[J]. J Hazard Mater,2020,400:123190. doi: 10.1016/j.jhazmat.2020.123190
    [36]
    DUCHESNE M A, HUGHES R W, LU D Y, MCCALDEN DJ, ANTHONY E J, MACCHI A. Fate of inorganic matter in entrained-flow slagging gasifiers: Pilot plant testing[J]. Fuel Process Technol,2014,125:18−33.
    [37]
    ZHANG L M, WANG J F, SONG X D, BAI Y H, YAO M, YU G S. Influence of biomass ash additive on fusion characteristics of high-silicon aluminum coal ash[J]. Fuel,2020,282:118876. doi: 10.1016/j.fuel.2020.118876
    [38]
    PETER Y H. Viscous deformation as a measure of heat work during coal ash fusibility testing[J]. Fuel,2020,281:118723. doi: 10.1016/j.fuel.2020.118723
    [39]
    LI M, LI F H, LIU Q R, FANG Y T,  XIAO H X. Regulation of ash fusibility for high ash-fusion-temperature (AFT) coal by industrial sludge addition[J]. Fuel,2019,244:91−103. doi: 10.1016/j.fuel.2019.01.161
    [40]
    FAN H L, LI F H, GUO Q Q, GUO M X. Effect of biomass ash on initial sintering and fusion characteristics of high melting coal ash[J]. J Energy Inst,2021,94:129−138. doi: 10.1016/j.joei.2020.11.008
    [41]
    YAN T G, BAI J, KONG L X, BAI Z Q, LI W, XU J. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature[J]. Fuel,2017,193(1):275−283.
    [42]
    REINMÖLLER M, SCHREINER M, GUHL S, NEUROTH M, MEYER B. Formation and transformation of mineral phases in various fuels studied by different ashing methods[J]. Fuel,2020,202:641−649.
    [43]
    ZHOU H, MA W C. An experimental study on the effects of adding biomass ashes on ash sintering behavior of Zhundong coal[J]. Appl Therm Eng,2017,126:689−701.
    [44]
    LI F H, FAN H L, FANG Y T. Investigation on the regulation mechanism of ash fusion characteristics in coal blending[J]. Energy Fuels,2017,31:379−386. doi: 10.1021/acs.energyfuels.6b02539
    [45]
    GE Z F, KONG L X, BAI J, Chen X D, HE C, LI H Z, BAI Z Q, LI P, LI W. Effect of CaO/Na2O on slag viscosity behavior under entrained flow gasification conditions[J]. Fuel Process Technol,2018,181:352−360. doi: 10.1016/j.fuproc.2018.10.002
    [46]
    GE Z, KONG L X, BAI J, ZHAO H L, CAO X, LI H Z, BAI Z Q, MEYER B, GUHLD S, LI P, LI W. Effect of CaO/Fe2O3 ratio on slag viscosity behavior under entrained flow gasification conditions[J]. Fuel,2019,258:116129. doi: 10.1016/j.fuel.2019.116129
    [47]
    JIANG J Y, ZHANG S, LONGHURST P, YANG W H, ZHENG S J. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc,2021,255:119724. doi: 10.1016/j.saa.2021.119724
    [48]
    POPOV V K, POSOKHOV Y M, RACHEV I L. IR spectroscopy of coal 2. Analysis of ash content from the difference spectra of minerals[J]. Coke Chem,2009,52(12):519−522. doi: 10.3103/S1068364X09120035
    [49]
    MOZGAWA W, KRÓL M, DYCZEK J, DEJA J. Investigation of the coal fly ashes using IR spectroscopy[J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2014,132:889−894. doi: 10.1016/j.saa.2014.05.052
    [50]
    BAI J, LI W, LI B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel,2008,87:583−591. doi: 10.1016/j.fuel.2007.02.010
    [51]
    LI Y, LI F H, MA M J, YU B, ZHAO C Y, FANG Y T. Prediction of ash flow temperature based on liquid phase mass fraction by FactSage[J]. J Energy Inst,2020,93(6):2228−2231. doi: 10.1016/j.joei.2020.06.004
    [52]
    SCHWITALLA D H, GUHL S, LAABS M, REINMÖLLER M, BAI J, MEYER B. Thermochemical and analytical approach to describe secondary slag phase formation and local process conditions in a full-scale BGL gasifier[J]. Fuel Process Technol,2021,217:106833. doi: 10.1016/j.fuproc.2021.106833
    [53]
    FAN H L, LI F H. Ash fusion temperature regulation mechanism of Xiangyang coal by coal blending[J]. J Therm Anal Calorim,2020,139(3):2055−2066. doi: 10.1007/s10973-019-08602-0
    [54]
    KONG L X, BAI J, LI W, WEN X D, LI X M, BAI Z Q, GUO Z X, LI H Z. The internal and external factor on coal ash slag viscosity at high temperatures, Part 3: Effect of CaO on the pattern of viscosity-temperature curves of slag[J]. Fuel,2016,179:10−16. doi: 10.1016/j.fuel.2016.03.063
    [55]
    LI F, LI M, ZHAO H M, FANG Y T. Experimental investigation of ash deposition behaviour modification of straws by lignite addition[J]. Appl Therm Eng,2017,125:134−144. doi: 10.1016/j.applthermaleng.2017.06.144
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (319) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return