Volume 50 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LI Zhao-yang, NIU Sheng-li, HAN Kui-hua, LI Ying-jie, WANG Yong-zheng, LU Chun-mei. Thermogravimetric analysis on the characteristics of oxy-fuel co-combustion of sub-bituminous coal and semi-coke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 937-953. doi: 10.1016/S1872-5813(22)60002-1
Citation: LI Zhao-yang, NIU Sheng-li, HAN Kui-hua, LI Ying-jie, WANG Yong-zheng, LU Chun-mei. Thermogravimetric analysis on the characteristics of oxy-fuel co-combustion of sub-bituminous coal and semi-coke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 937-953. doi: 10.1016/S1872-5813(22)60002-1

Thermogravimetric analysis on the characteristics of oxy-fuel co-combustion of sub-bituminous coal and semi-coke

doi: 10.1016/S1872-5813(22)60002-1
Funds:  The project was supported by the Primary Research & Development Plan of Shandong Province, China (2018GGX104027).
More Information
  • Corresponding author: Tel: +86 531 88392414. E-mail: nsl@sdu.edu.cn
  • Received Date: 2022-01-02
  • Accepted Date: 2022-02-18
  • Rev Recd Date: 2022-02-18
  • Available Online: 2022-03-18
  • Publish Date: 2022-08-26
  • The co-combustion of the low-rank coal with coal derived semi-coke is of great significance to solve the urgent problem of excessively produced semi-coke in China. In this research, the oxy-fuel co-combustion characteristics of Zhundong sub-bituminous coal with bituminous coal derived semi-coke are systematically investigated using thermogravimetric analysis. Compared with air combustion, oxy-fuel atmosphere increased the ignition and burnout temperature by 10 and 40 °C, respectively. Increasing the oxygen concentration to 30% strongly compensated for the slight reduction of the combustion parameters under oxy-fuel condition and much better co-combustion performance was obtained. Three iso-conversional methods, namely, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink, were applied to estimate the activation energy, which can be divided into two stages during the co-combustion process. The average activation energy of sub-bituminous coal, the blend and semi-coke were 49.31, 50.82 and 59.00 kg/mol, respectively. Further, the pre-exponential factor and thermodynamic parameters of the enthalpy change, Gibbs free energy change and entropy change were calculated. Interaction indices were innovatively used for both kinetic-thermodynamic parameters and DTG values. An obvious interaction can be observed during the co-combustion process. The kinetic and thermodynamic results demonstrated that the 30% semi-coke ratio was beneficial to co-combustion. Meanwhile, X-ray fluorescence (XRF) and ash fusion analyses proved that the slagging tendency of sub-bituminous coal ash reduced by blending of semi-coke.
  • loading
  • [1]
    LIU S Q, ZHANG Y J, TUO K Y, WANG L P, CHEN G. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal[J]. Fuel Process Technol,2018,178:139−147. doi: 10.1016/j.fuproc.2018.05.028
    [2]
    ZHENG S W, HU Y J, WANG Z Q, CHENG X X. Experimental investigation on ignition and burnout characteristics of semi-coke and bituminous coal blends[J]. J Energy Inst,2020,93(4):1373−1381. doi: 10.1016/j.joei.2019.12.007
    [3]
    XIE K C, LI W Y, ZHAO W. Coal chemical industry and its sustainable development in china[J]. Energy,2010,35(11):4349−4355. doi: 10.1016/j.energy.2009.05.029
    [4]
    HU L L, ZHANG Y, CHEN D G, ZHANG M, WU Y X, ZHANG H. Experimental study on the combustion and NOx emission characteristics of a bituminous coal blended with semi-coke[J]. Appl Therm Eng,2019,160:113993. doi: 10.1016/j.applthermaleng.2019.113993
    [5]
    ZHANG J P, WANG C A, JIA X W, WANG P Q, CHE D F. Experimental study on combustion and NO formation characteristics of semi-coke[J]. Fuel,2019,258:11618.
    [6]
    GONG Z Q, LIU Z C, ZHOU T, LU Q G, SUN Y K. Combustion and NO emission of Shenmu char in a 2 MW circulating fluidized bed[J]. Energy Fuels,2015,29(2):1219−1226. doi: 10.1021/ef502768w
    [7]
    YAO Y, ZHU J G, LU Q G. Experimental study on nitrogen transformation in combustion of pulverized semi-coke preheated in a circulating fluidized bed[J]. Energy Fuels,2015,29(6):3985−3991. doi: 10.1021/acs.energyfuels.5b00791
    [8]
    LV Z M, XIONG X H, YU S L, TAN H Z, XIANG B X, HUANG J, PENG J H, LI P. Experimental investigation on NO emission of semi-coke under high temperature preheating combustion technology[J]. Fuel,2021,283:119293. doi: 10.1016/j.fuel.2020.119293
    [9]
    LI J B, ZHU M B, ZHANG Z Z, ZHANG K, SHEN G Q, ZHANG D K. The mineralogy, morphology and sintering characteristics of ash deposits on a probe at different temperatures during combustion of blends of Zhundong sub-bituminous coal and a bituminous coal in a drop tube furnace[J]. Fuel Process Technol,2016,149:176−186. doi: 10.1016/j.fuproc.2016.04.021
    [10]
    LIAO X J, SINGH S, YANG H P, WU C F. A thermogravimetric assessment of the tri-combustion process for coal, biomass and polyethylene[J]. Fuel,2021,287:19355.
    [11]
    AREEPRASERT C, SCALA F, COPPOLA A, URCIUOLO M, CHIRONE R, CHANYAVANICH P, YOSHIKAWA K. Fluidized bed co-combustion of hydrothermally treated paper sludge with two coals of different rank[J]. Fuel Process Technol,2016,144:230−238. doi: 10.1016/j.fuproc.2015.12.033
    [12]
    BUYUKADA M. Investigation of thermal conversion characteristics and performance evaluation of co-combustion of pine sawdust and sub-bituminous coal using TGA, artificial neural network modeling and likelihood method[J]. Bioresour Technol,2019,287:121461. doi: 10.1016/j.biortech.2019.121461
    [13]
    LIAO Y F, MA X Q. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge[J]. ApEn,2010,87(11):3526−3532.
    [14]
    MUTHURAMAN M, NAMIOKA T, YOSHIKAWA K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis[J]. ApEn,2010,87(1):141−148.
    [15]
    LIU H P, LIANG W X, QIN H, WANG Q. Synergy in co-combustion of oil shale semi-coke with torrefied cornstalk[J]. Appl Therm Eng,2016,109:653−662. doi: 10.1016/j.applthermaleng.2016.08.125
    [16]
    LIU H P, LIANG W X, QIN H, WANG Q. Thermal behavior of co-combustion of oil shale semi-coke with torrefied cornstalk[J]. Appl Therm Eng,2016,109:413−422. doi: 10.1016/j.applthermaleng.2016.08.084
    [17]
    WANG Q, XU H, LIU H P, JIA C X, ZHAO W Z. Co-combustion performance of oil shale semi-coke with corn stalk[J]. Energy Procedia,2012,17:861−868. doi: 10.1016/j.egypro.2012.02.180
    [18]
    WANG Q, ZHAO W Z, LIU H P, JIA C X, LI S H. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion[J]. ApEn,2011,88(6):2080−2087.
    [19]
    YANG Y, LU X F, WANG Q H. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis[J]. Energy Convers Manage,2017,136:99−107. doi: 10.1016/j.enconman.2017.01.006
    [20]
    LIU Z, LI J B, ZHU M M, WANG Q H, LU X F, ZHANG Y Y, ZHANG Z Z, ZHANG D K. Investigation into scavenging of sodium and ash deposition characteristics during co-combustion of Zhundong sub-bituminous coal with an oil shale semi-coke of high aluminosilicate in a circulating fluidized bed[J]. Fuel,2019,257:116099. doi: 10.1016/j.fuel.2019.116099
    [21]
    HU Z J, LIU Y R, XU H, ZHU J M, WU S L, SHEN Y S. Co-combustion of semicoke and coal in an industry ironmaking blast furnace: Lab experiments, model study and plant tests[J]. Fuel Process Technol,2019,196:106165. doi: 10.1016/j.fuproc.2019.106165
    [22]
    SUN L T, YAN Y H, SUN R, ZHU W K, YUAN M F, QI H L, WU J Q. Effects of bluff-body cone angle on turbulence-chemistry interaction behaviors in large-scale semicoke and bituminous coal co-combustion[J]. Fuel Process Technol,2021,221:106915. doi: 10.1016/j.fuproc.2021.106915
    [23]
    YAO H F, HE B S, DING G C, TONG W X, KUANG Y C. Thermogravimetric analyses of oxy-fuel co-combustion of semi-coke and bituminous coal[J]. Appl Therm Eng,2019,156:708−721. doi: 10.1016/j.applthermaleng.2019.04.115
    [24]
    WANG P Q, WANG C A, YUAN M B, WANG C W, ZHANG J P, DU Y B, TAO Z C, CHE D F. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere[J]. ApEn,2020,260:114203.
    [25]
    ZHANG J P, JIA X W, WANG C A, ZHAO N, WANG P Q, CHE D F. Experimental investigation on combustion and NO formation characteristics of semi-coke and bituminous coal blends[J]. Fuel,2019,247:87−96. doi: 10.1016/j.fuel.2019.03.045
    [26]
    ZHU S J, LYU Q G, ZHU J G, WU H X, WU G L. Effect of air distribution on NOx emissions of pulverized coal and char combustion preheated by a circulating fluidized bed[J]. Energy Fuels,2018,32(7):7909−7915. doi: 10.1021/acs.energyfuels.8b01366
    [27]
    NIU S L, LU C M, HAN K H, ZHAO J L. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere[J]. JTAC,2009,98:267−274.
    [28]
    XU C B, YANG J J, HE L, WEI W X, YANG Y, YIN X D, YANG W J, LIN A J. Carbon capture and storage as a strategic reserve against China's CO2 emissions[J]. Environ Dev,2021,37:100608. doi: 10.1016/j.envdev.2020.100608
    [29]
    DESSI F, MUREDDU M, FERRARA F, FERMOSO J, ORSINI A, SANNA A, PETTINAU A. Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion[J]. Energy,2021,217:119394. doi: 10.1016/j.energy.2020.119394
    [30]
    SEDDIGHI S, CLOUGH P T, ANTHONY E J, HUGHES R W, LU P. Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds[J]. ApEn,2018,232:527−542.
    [31]
    LIU Q W, SHI Y, ZHONG W Q, YU A B. Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances[J]. Chin J Chem Eng,2019,27(10):2261−2272. doi: 10.1016/j.cjche.2019.07.013
    [32]
    LI A J, CHEN Z, LIAO Y H, LIU Y H. A synthetical evaluation of developing low-carbonized coal-fired power technologies in China[J]. IJHE,2017,42(32):20857−20867.
    [33]
    RUAN R H, TAN H Z, WANG X B, HU Z F. Evolution of particulate matter in the post-combustion zone of Zhundong sub-bituminous coal[J]. Fuel,2020,281:118780. doi: 10.1016/j.fuel.2020.118780
    [34]
    S. P S P, G S, JOSHI V V. Thermogravimetric analysis of hazardous waste: Pet-coke, by kinetic models and Artificial neural network modeling[J]. Fuel,2021,287:119470. doi: 10.1016/j.fuel.2020.119470
    [35]
    HU M, CHEN Z H, GUO D B, LIU C X, XIAO B, HU Z Q, LIU S M. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria[J]. Bioresour Technol,2015,177:41−50. doi: 10.1016/j.biortech.2014.11.061
    [36]
    NIU S L, LIU M Q, LU C M, LI H, HUO M J. Thermogravimetric analysis of carbide slag[J]. JTAC,2013,115:73−79.
    [37]
    GONZALEZ D L, LOPEZ M F, VALVERDE J L, SILVA L S. Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry[J]. ApEn,2014,114:227−237.
    [38]
    NIU S L, YU H W, ZHAO S, ZHANG X Y, LI X M, HAN K H, LU C M, WANG Y Z. Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis[J]. Renewable Energy,2019,133:373−381. doi: 10.1016/j.renene.2018.10.045
    [39]
    XIAO H M, MA X Q, LAI Z Y. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal[J]. ApEn,2009,86(9):1741−1745.
    [40]
    YUAN X S, HE T, CAO H L, YUAN Q X. Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods[J]. Renewable Energy,2017,107:489−496. doi: 10.1016/j.renene.2017.02.026
    [41]
    MAIA A A D, DE Morais L C. Kinetic parameters of red pepper waste as biomass to solid biofuel[J]. Bioresour Technol,2016,204:157−163. doi: 10.1016/j.biortech.2015.12.055
    [42]
    FAN Y J, YANG B L, ZHANG B, WU Z Q, SUN Z Y, SHANG J X. Synergistic effects from fast co-pyrolysis of lignin with low-rank coal: On-line analysis of products distribution and fractal analysis on co-pyrolysis char[J]. J Energy Inst,2021,97:152−160. doi: 10.1016/j.joei.2021.04.009
    [43]
    XIE C D, LIU J Y, ZHANG X C, XIE W M, SUN J, CHANG K L, KUO J H, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. ApEn,2018,212:786−795.
    [44]
    ZHOU C C, LIU G J, WANG X D, QI C C, HU Y H. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal[J]. Bioresour Technol,2016,214:218−224. doi: 10.1016/j.biortech.2016.04.104
    [45]
    BOTELHO T, COSTA M, WILK M, MAGDZIARZ A. Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace[J]. Fuel,2018,212:95−100. doi: 10.1016/j.fuel.2017.09.118
    [46]
    CHEN J C, XIE C D, LIU J Y, HE Y, XIE W M, ZHANG X C, CHANG K L, KUO J H, SUN J, ZHENG L, SUN S Y, BUYUKADA M, EVRENDILEK F. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling[J]. Bioresour Technol,2018,250:230−238. doi: 10.1016/j.biortech.2017.11.031
    [47]
    SHADDIX C R, MOLINA A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion[J]. Proc Combust Inst,2009,32(2):2091−2098. doi: 10.1016/j.proci.2008.06.157
    [48]
    RIAZA J, GIL M V, ALVAREZ L, PEVIDA C, PIS J J, RUBIERA F. Oxy-fuel combustion of coal and biomass blends[J]. Energy,2012,41(1):429−435. doi: 10.1016/j.energy.2012.02.057
    [49]
    XU Y L, CHEN B L. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis[J]. Bioresour Technol,2013,146:485−493. doi: 10.1016/j.biortech.2013.07.086
    [50]
    KIM H S, Kim J H. Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride[J]. Process Biochem,2017,56:163−170. doi: 10.1016/j.procbio.2017.02.007
    [51]
    KOTHARI R, PATHAK V V, PANDEY A, AHMAD S, SRIVASTVA C, TYAGI V V. A novel method to harvest Chlorella sp. via low cost bioflocculant: Influence of temperature with kinetic and thermodynamic functions[J]. Bioresour Technol,2017,225:84−89. doi: 10.1016/j.biortech.2016.11.050
    [52]
    DENG S H, WANG X B, TAN H Z, MIKULCIC F, LI Z F, DUIC N. Thermogravimetric study on the Co-combustion characteristics of oily sludge with plant biomass[J]. Thermochim Acta,2016,633:69−76. doi: 10.1016/j.tca.2016.03.006
    [53]
    SEZER S, KARTAL F, OZVEREN U. The investigation of co-combustion process for synergistic effects using thermogravimetric and kinetic analysis with combustion index[J]. Therm Sci Eng Prog,2021,23:100889. doi: 10.1016/j.tsep.2021.100889
    [54]
    GIL MV, RIAZA J, ALVAREZ L, PEVIDA C, PIS J J, RUBIERA F. Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres[J]. Energy,2012,48(1):510−518. doi: 10.1016/j.energy.2012.10.033
    [55]
    CHEN J C, HE Y, LIU J Y, LIU C, XIE W M, KUO J H, ZHANG X C, LI S P, LIANG J L, SUN S Y, BUYAKADA M, EVRENDILEK F. The mixture of sewage sludge and biomass waste as solid biofuels: Process characteristic and environmental implication[J]. Renew Energ,2019,139:707−717. doi: 10.1016/j.renene.2019.01.119
    [56]
    LI J B, ZHU M M, ZHANG Z Z, ZHANG K, SHEN G Q, ZHANG D K. Effect of coal blending and ashing temperature on ash sintering and fusion characteristics during combustion of Zhundong sub-bituminous coal[J]. Fuel,2017,195:131−142. doi: 10.1016/j.fuel.2017.01.064
    [57]
    QIAO L, DENG C B, LU B, WANG Y S, WANG X F, DENG H Z, ZHANG X. Study on calcium catalyzes coal spontaneous combustion[J]. Fuel,2022,307:121884. doi: 10.1016/j.fuel.2021.121884
    [58]
    ZHAO Y J, FENG D D, LI B W, SUN S Z, ZHANG S. Combustion characteristics of char from pyrolysis of Zhundong sub-bituminous coal under O2/steam atmosphere: Effects of mineral matter[J]. Int J Greenh Gas Control,2019,80:54−60. doi: 10.1016/j.ijggc.2018.12.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (278) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return