Volume 50 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
LIU Jing-ge, YAN Guo-chun, FANG Ke-gong, ZHANG Cheng-hua. Indium modified zirconia coupling with HZSM-5 for syngas conversion to aromatics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1023-1033. doi: 10.1016/S1872-5813(22)60006-9
Citation: LIU Jing-ge, YAN Guo-chun, FANG Ke-gong, ZHANG Cheng-hua. Indium modified zirconia coupling with HZSM-5 for syngas conversion to aromatics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1023-1033. doi: 10.1016/S1872-5813(22)60006-9

Indium modified zirconia coupling with HZSM-5 for syngas conversion to aromatics

doi: 10.1016/S1872-5813(22)60006-9
More Information
  • Corresponding author: E-mail: zhangchh@sxicc.ac.cn
  • Received Date: 2021-10-29
  • Accepted Date: 2022-01-21
  • Rev Recd Date: 2021-12-16
  • Available Online: 2022-03-25
  • Publish Date: 2022-08-26
  • Metal oxide-zeolite (OX-ZEO) bifunctional catalysts have been shown to have excellent aromatic selectivity and catalytic stability in syngas conversion; however, low CO conversion hinders their further development. In this paper, a series of In-ZrO2 bi-metallic oxides with In/Zr molar ratio ranging of 1/100−1/1 were prepared. After thoroughly investigated by X-ray diffraction, transmission electron microscopy, N2 sorption, pyridine-adsorbed infrared spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance and temperature programmed desorption technologies, we found that introduction of indium has significantly influence on the catalytic performance due to the variation of sample’s physicochemical properties. Indium species was benefit to the dissociation of H2 that promotes CO activation. Nevertheless, it also induced the formation of more CH4. In-ZrO2 oxide with In/Zr ratio of 1/50 showed CO conversion of 18.2% with the selectivity of oxygenates of 86.4%. After combined with H-ZSM-5, In/Zr=1/50&H-ZSM-5 gave CO conversion of 46.5% with $ {\rm{C}}_{5+} $ selectivity of 62.6% and the aromatic selectivity in ${\rm{C}}_{5+} $ reached 93.4%. However, the catalytic stability of this bifunctional catalyst was gradually decreased due to the aggregation of indium atoms.
  • loading
  • [1]
    ALEXANDER M N, ONUR O, CHRISTODOULOS A F. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization[J]. AIChE J,2016,62:1531−1556. doi: 10.1002/aic.15144
    [2]
    ALEXANDER M N, ONUR O, YANINIS A G, CHRISTODOULOS A F. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and deterministic global optimization[J]. Energy Fuels,2016,30:4970−4998. doi: 10.1021/acs.energyfuels.6b00619
    [3]
    CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bi-functional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3:334−347. doi: 10.1016/j.chempr.2017.05.007
    [4]
    YANG J H, PAN X L, JIAO F, LI J, BAO X H. Direct conversion of syngas to aromatics[J]. Chem Commun,2017,53:11146−11149. doi: 10.1039/C7CC04768A
    [5]
    ZHOU W, SHI S L, WANG Y, ZHANG L, WANG Y, ZHANG G Q, MIN X J, CHENG K, ZHANG Q H, KANG J C, WANG Y. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst[J]. ChemCatChem,2019,11:1−9. doi: 10.1002/cctc.201801860
    [6]
    HUANG Z, WANG S, QIN F, HUANG L, YUE Y H, HUA W M, QIAO M H, HE H Y, SHEN W, XU H L. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem,2018,10:4519−4524. doi: 10.1002/cctc.201800911
    [7]
    ZHAO B, ZHAI P, WANG P F, LI J Q, PENG M, ZHAO M, HU G, YANG Y, LI Y W, ZHANG Q W, FAN W B, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3:1−11. doi: 10.1016/j.chempr.2017.06.021
    [8]
    XU Y F, LIU J G, MA G Y, WANG J, LIN J H, WANG H T, ZHANG C H, DING M Y. Effect of iron loading on acidity and performance of Fe/HZM-5 catalyst for direct synthesis of aromatics from syngas[J]. Fuel,2018,228:1−9. doi: 10.1016/j.fuel.2018.04.151
    [9]
    XU Y B, LIU D P, LIU X H. Conversion of syngas toward aromatics over Fe-based Fishcer-Tropsch catalysts and HZSM-5 zeolites[J]. Appl Catal A: Gen,2018,552:168−183. doi: 10.1016/j.apcata.2018.01.012
    [10]
    XU Y F, LIU J G, MA G Y, WANG J, WANG Q, LIN J H, WANG H T, ZHANG C H, DING M Y. Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts[J]. Mol Catal,2018,454:104−113. doi: 10.1016/j.mcat.2018.05.019
    [11]
    LI Y W, HE D H, ZHU Q M, ZHANG X, XU B Q. Effects of redox and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. J Catal,2004,221:584−593. doi: 10.1016/j.jcat.2003.09.023
    [12]
    CLARENCEl D C, WILLIAM H L, ANTHONY J S. Synthesis gas conversion to aromatics hydrocarbons[J]. J Catal,1979,56:268−273. doi: 10.1016/0021-9517(79)90113-1
    [13]
    WATCHARAPONG K, NICHA T, BUNJERD J, PIYASAN P, SUTTICHAI A. A study on isosynthesis via CO hydrogenation over ZrO2-CeO2 mixed oxide catalysts[J]. Chem Commun,2009,10:494−501.
    [14]
    LI Y W, HE D H, ZHU Z H, ZHU Q M, XU B Q. Properties of Sm2O3-ZrO2 composite oxides and their catalytic performance in isosynthesis[J]. Appl Catal A: Gen,2007,319:119−127. doi: 10.1016/j.apcata.2006.11.020
    [15]
    LI Y W, HE D H, YUAN Y B, CHENG Z X, ZHU Q M. Influence of acidic and basic properties of ZrO2 based catalysts on isosynthesis[J]. Fuel,2002,81:1611−1617. doi: 10.1016/S0016-2361(02)00082-0
    [16]
    WATCHARAPONG K, NICHA T, BUNJERD J, NAVADOL L, PIYASAN P, SUTTICHAI A. Isosynthesis via CO hydrogenation over SO4-ZrO2 catalysts[J]. J Ind Eng Chem,2016,16:411−418.
    [17]
    LIU X L, ZHOU W, YANG Y D, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9:4708−4718. doi: 10.1039/C8SC01597J
    [18]
    MARTIN O, ANTONIO J M, CECILIA M, SHARON M, TAKUYA F S, ROLAND H, CHARLOTTE D, DANIEL C F, JAVIER P R. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed,2016,55:6261−6265. doi: 10.1002/anie.201600943
    [19]
    WANG J Y, ZHANG A F, JIANG X, SONG C S, GUO X W. Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite[J]. J CO2 Util,2018,27:81−88. doi: 10.1016/j.jcou.2018.07.006
    [20]
    SU J J, WANG D, WANG Y D, ZHOU H B, LIU C, LIU S, WANG C M, YANG W M, XIE Z K, HE M Y. Direct conversion of syngas to light olefins over Zr-In2O3 and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem,2018,10:1536−1541. doi: 10.1002/cctc.201702054
    [21]
    SONJA K, KAROLIINA H, LEON L, JAANA K. Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide[J]. Catal Sci Technol,2015,5:3473−3490. doi: 10.1039/C5CY00330J
    [22]
    PRISCILA C Z, VIVIAN L B, GUILHERME G G, CARLA R M, ODIVALDO C A, ROBERTO R A, LUCIA G A. Isobutene from ethanol: Describing the synergy between In2O3 and m-ZrO2[J]. ChemCatChem, 2019, 11: 4011-4029.
    [23]
    LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir,2008,24:8358−8366. doi: 10.1021/la800370r
    [24]
    JONG R S, SI H L, JUN S L. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis[J]. Catal Today,2006,116:143−150. doi: 10.1016/j.cattod.2006.01.023
    [25]
    THANAPA N, CHULARAT W, METTA C, JUMRAS L, THONGTHAI W. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Convers Manage,2019,180:511−523. doi: 10.1016/j.enconman.2018.11.011
    [26]
    YANG X R, CHENG X W, MA J H, ZOU Y D, LUO W, DENG Y H. Large-pore mesoporous CeO2-ZrO2 solid solutions with In-pore confined Pt nanoparticles for enhanced CO oxidation[J]. Small,2019,15:1903058−10903069. doi: 10.1002/smll.201903058
    [27]
    WANG X W, LI Q C, GAN L, JI X F, CHEN F Y, PENG X K, ZHANG R B. 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction[J]. J Energ Chem,2021,53:139−146. doi: 10.1016/j.jechem.2020.05.001
    [28]
    SUN J M, ZHU K K, GAO F, WANG C M, LIU J, CHARLES H F P, WANG Y. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites[J]. J Am Chem Soc,2011,133:11096−11099. doi: 10.1021/ja204235v
    [29]
    KAM T W, CHARLES B K, MARK E D. Studies on the catalytic activity of zirconia promoted with sulfate, iron, and manganese[J]. J Catal,1996,158:311−326. doi: 10.1006/jcat.1996.0030
    [30]
    RUI N, WANG Z Y, SUN K H, YE J Y, GE Q F, LIU C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B: Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069
    [31]
    LIU J G, HE Y R, YAN L L, MA C P, ZHANG C H, XIANG H W, WEN X D, LI Y W. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel,2020,263:116803−116814. doi: 10.1016/j.fuel.2019.116803
    [32]
    LIU J G, HE Y R, YAN L L, LI K, ZHANG C H, XIANG H W, WEN X D, LI Y W. Nano-sized ZrO2 derived from metal-organic frameworks and their catalytic performance for aromatic synthesis from syngas[J]. Catal Sci Technol,2019,9:2982−2992. doi: 10.1039/C9CY00453J
    [33]
    SATO A G, VOLANTI D P, MEIRA D M, DAMYANOVA S, LONGO E, BUENO J M C. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion[J]. J Catal,2013,307:1−17. doi: 10.1016/j.jcat.2013.06.022
    [34]
    WU G S, WANG L C, LIU Y M, CAO Y, DAI W L, HE H Y, FAN K N. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts[J]. Appl Surf Sci,2006,253:974−982. doi: 10.1016/j.apsusc.2006.01.056
    [35]
    NAVIO J A, HIDALGO M C, COLON G, BOTTA S G, LITTER M I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique[J]. Langmuir,2001,17:202−210. doi: 10.1021/la000897d
    [36]
    ZHANG J J, GAO Y F, JIA X R, WANG J Y, CHEN Z, XU Y. Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible-light photocatalytic performance[J]. Sol Energy Mat Sol C,2018,182:113−120. doi: 10.1016/j.solmat.2018.03.023
    [37]
    OKSANA G, SUSANNA S, GALINA V, SERGEY G, TETYANA K, SVETLANA L. Formation of metastable tetragonal zirconia nanoparticle: Competitive influence of the dopants and surface state[J]. J Solid State Chem,2015,232:249−255. doi: 10.1016/j.jssc.2015.09.026
    [38]
    LEYDI R S, PRISICILA C Z, CLARISSA P R, ODIVALDO C A, LUCIA G A, ROBERTO R A. The ZnxZr1-xO2-y solid solution on m-ZrO2: Creating O vacancies and improving the m-ZrO2 redox properties[J]. J Mol Catal A: Chem,2016,425:166−173. doi: 10.1016/j.molcata.2016.10.008
    [39]
    ZHOU R X, YU T M, JIANG X Y, FANG C, ZHENG X M. Temperature-programmed reduction and temperature-programed desorption studies of CuO/ZrO2 catalysts[J]. Appl Surf Sci,1999,148:263−270. doi: 10.1016/S0169-4332(98)00369-9
    [40]
    MAITY S K, RANA M S, SRINIVAS B N, BEJ S K, MURALI D G, PRASADA T S R. Characterization and evaluation of ZrO2 supported hydrotreating catalysts[J] J Mol Catal A: Chem, 2000, 153: 121-127.
    [41]
    CHOUDHARY T V, KINAGE A, BANERJEE S, CHOUDHARY V R. Influence of space velocity on product selectivity and distribution of aromatics in propane aromatization over H-GaAlMFI zeolite[J]. J Mol Catal A: Chem,2006,246:79−84. doi: 10.1016/j.molcata.2005.10.025
    [42]
    SONG C, LI X J, ZHU X X, LIU S L, CHEN F C, LIU F, XU L Y. Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects cofeeding n-butane with methanol[J]. Appl Catal A: Gen,2016,519:48−55. doi: 10.1016/j.apcata.2016.03.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1458) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return