Volume 50 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LI Rui-jie, ZHANG Ju-ping, SHI Jian, LI Kong-zhai, LIU Hui-li, ZHU Xing. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1458-1470. doi: 10.1016/S1872-5813(22)60032-X
Citation: LI Rui-jie, ZHANG Ju-ping, SHI Jian, LI Kong-zhai, LIU Hui-li, ZHU Xing. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1458-1470. doi: 10.1016/S1872-5813(22)60032-X

Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane

doi: 10.1016/S1872-5813(22)60032-X
Funds:  The project was supported by the National Natural Science Foundation of China (52066007, 22279048) , Yunnan Major Scientific and Technological Projects (202202AG050017), the Basic Research Program of Yunnan Province (202101AT070076) and the High-level Talents Training Support Program of Yunnan Provinc
  • Received Date: 2022-03-16
  • Accepted Date: 2022-04-24
  • Rev Recd Date: 2022-04-23
  • Available Online: 2022-06-09
  • Publish Date: 2022-11-30
  • Interface regulation is an effective strategy to improve the interaction between carrier and active metal center, which can improve the catalytic activity and oxygen storage capacity of the catalysts. In this paper, Ni/CeO2 catalysts supported on CeO2 with different morphologies (nanorods, nanocubes, nanoctahedrons and nanopolyhedrons) were synthesized. The structure dependence of the catalysts for the low temperature chemical looping dry reforming of methane (CL-DRM) was investigated. The characterization results showed that Ni species were highly dispersed on the surface of CeO2 carrier, and some Ni ions entered the CeO2 lattice, resulting in the increase of oxygen vacancies. The Ni/ceria-rods catalyst had the highest reducibility, the most oxygen vacancies and the highest oxygen storage capacity. The irregular CeO2 nano single crystal of about 10.3 nm in the Ni/ceria-polyhedra led to high specific surface area and high reducibility which exhibited the highest redox activity and redox stability in low-temperature chemical looping dry reforming of methane at 550 ℃. This study provided a new strategy for the design of efficient metal/CeO2 catalysts, which was expected to promote the application of cerium-based catalysts in chemical looping technology.
  • loading
  • [1]
    ARAMOUNI NA K, ZEAITER J, KWAPINSKI W, AHMAD, MN. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation[J]. Energy Conv Manag,2017,150:614−622. doi: 10.1016/j.enconman.2017.08.056
    [2]
    LARIONOV K B, GROMOV A A. Non-isothermal oxidation of coal with Ce(NO3)3 and Cu(NO3)2 additives[J]. Int J Coal Sci Technol,2019,6(1):37−50. doi: 10.1007/s40789-018-0229-y
    [3]
    CHEN S, ZAFFRAN J, YANG B. Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation[J]. Appl Catal B: Environ,2020,270:9.
    [4]
    ZHANG X, ZHANG L, PENG H, YOU X, PENG C. Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: A catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming[J]. Appl Catal B: Environ,2018,224:488−499. doi: 10.1016/j.apcatb.2017.11.001
    [5]
    QING W, Lin C, CHENG W, XIAO X. Enhancing the activity of iron based oxygen carrier via surface controlled preparation for lignite chemical looping combustion[J]. Chem J Chin Univ,2015,36(1):116−123.
    [6]
    ZENG L, HUANG F, ZHU X, ZHENG M, LI K. Chemical looping of methane over CeO2-based and Co3O4-CeO2 oxygen carriers: Controlling of product selectivity[J]. Chem J Chin Univ,2017,38(1):11.
    [7]
    ZENG L, LI K, HUANG F, ZHU X, LI H. Effects of Co3Oz` nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity[J]. Chin J Catal, 37(6): 908−922.
    [8]
    LOFBERG A, KANE T, GUERRERO-CABALLERO J, JALOWIECKI-DUHAME, L. Chemical looping dry reforming of methane: Toward shale-gas and biogas valorization[J]. Chem Eng Process,2017,122:523−529. doi: 10.1016/j.cep.2017.05.003
    [9]
    ZHU X, GAO Y, WANG X, HARIBAL V, LIU J, NEAL L M. A tailored multi-functional catalyst for ultra-efficient styrene production under a cyclic redox scheme[J]. Nat Commun,2021,12(1):11−25. doi: 10.1038/s41467-020-20162-8
    [10]
    ZHU X, IMTIAZ Q, DONAT F, MULLER CR, LI F. Chemical looping beyond combustion - a perspective[J]. Energy Environ Sci,2020,13(3):772−804. doi: 10.1039/C9EE03793D
    [11]
    NANDY A, LOHA C, GU S, SARKAR P, KARMAKAR MK, CHATTRJEE P K. Present status and overview of chemical looping combustion technology[J]. Renewable Sustainable Energy Rev,2016,59:597−619. doi: 10.1016/j.rser.2016.01.003
    [12]
    ZHU M, SONG Y, CHEN S, LI M, ZHANG L, XIANG W. Chemical looping dry reforming of methane with hydrogen generation on Fe2O3/Al2O3 oxygen carrier[J]. Chem Eng J,2019,368:812−823. doi: 10.1016/j.cej.2019.02.197
    [13]
    BUELENS L C, GALVITA V V, POELMAN H, DETAVERNIE C, MARIN GB. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle[J]. Science,2016,354(6311):449−452. doi: 10.1126/science.aah7161
    [14]
    AY H, UNER D. Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts[J]. Appl Catal B: Environ,2015,179:128−138. doi: 10.1016/j.apcatb.2015.05.013
    [15]
    YANG Z, LEI Z, GE B, XIONG X, JIN Y, JIAO K, CHEN F. Development of catalytic combustion and CO2 capture and conversion technology[J]. Int J Coal Sci Technol,2021,8(3):377−382. doi: 10.1007/s40789-021-00444-2
    [16]
    CHEN L, BAO J, KONG L, COMBS M, NIKOLIC HS, FAN Z. The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion[J]. Appl Energy,2016,184:9−18. doi: 10.1016/j.apenergy.2016.09.085
    [17]
    TANG M, XU L, FAN M. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review[J]. Appl Energy,2015,151:143−156. doi: 10.1016/j.apenergy.2015.04.017
    [18]
    ZHU X, ZHANG M, LI K, WEI Y, ZHENG Y, HU J, WANG H. Chemical-looping water splitting over ceria-modified iron oxide: Performance evolution and element migration during redox cycling[J]. Chem Eng Sci,2018,179:92−103. doi: 10.1016/j.ces.2018.01.015
    [19]
    HAN Y, TIAN M, WANG C, KANG Y, KANG L, SU Y. Highly active and anticoke Ni/CeO2 with ultralow ni loading in chemical looping dry reforming via the strong metal-support interaction[J]. ACS Sustainable Chem Eng,2021,9(51):17276−17288.
    [20]
    ZHU X, WEI Y, WANG H. Ce-Fe oxygen carriers for chemical-looping steam methane reforming[J]. Int J Hydrog Energy,2013,38(11):4492−4501. doi: 10.1016/j.ijhydene.2013.01.115
    [21]
    ZHU X, LI K, WEI Y, WANG H, SUN L. Chemical-looping steam methane reforming over a CeO2–Fe2O3 oxygen carrier: Evolution of its structure and reducibility[J]. Energy Fuels,2014,28(2):754−760. doi: 10.1021/ef402203a
    [22]
    DOU B, ZHANG H, SONG Y, ZHAO L, JIANG B, HE M, CHEN H. Hydrogen production from the thermochemical conversion of biomass: Issues and challenges[J]. Sustainable Energy Fuels,2019,3(2):314−342. doi: 10.1039/C8SE00535D
    [23]
    DE DIEGO L F, ORTIZ M, ADANEZ J. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers[J]. Chem Eng J,2008,144(2):289−298. doi: 10.1016/j.cej.2008.06.004
    [24]
    ZHU X, WANG H, WEI Y, LI K. Hydrogen and syngas production from two-step steam reforming of methane over CeO2-Fe2O3 oxygen carrier[J]. J Rare Earths,2010,28(6):907−913. doi: 10.1016/S1002-0721(09)60225-8
    [25]
    DING W, ZHAO K, JIANG S, ZHAO Z, CAO Y, HE F. Alkali-metal enhanced LaMnO3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane[J]. Appl Catal A: Gen,2021,609:8−19.
    [26]
    HUANG J, LIU W, HU W, METCALFE I, YANG Y, LIU B. Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications[J]. Appl Energy,2019,236:635−647. doi: 10.1016/j.apenergy.2018.12.029
    [27]
    MEJIA C, DEELEN T V, JONG K. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970. doi: 10.1038/s41929-019-0364-x
    [28]
    MAI H, SUN L, ZHANG Y, SI R, FENG W, ZHANG H, LIU H, YAN Ch. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B,2005,109(51):24380−24385. doi: 10.1021/jp055584b
    [29]
    HE L, REN Y, FU Y, YUE B, TSANG S, HE H. Morphology-dependent catalytic activity of Ru/CeO2 in dry reforming of methane[J]. Molecules,2019,24(3):12−23.
    [30]
    YAN X, HU T, LIU P, LI S, ZHAO B, ZANG Q, JIAO W. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Appl Catal B: Environ,2019,246:221−231. doi: 10.1016/j.apcatb.2019.01.070
    [31]
    DATTA S, TORRENTE-MURCIANO L. Nanostructured faceted ceria as oxidation catalyst[J]. Curr Opin Chem Eng,2018,20:99−106. doi: 10.1016/j.coche.2018.03.009
    [32]
    HUANG F, YE D, GUO X, ZHAN W, GUO Y, WANG L, WANG Y. Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N, N-dimethylformamide[J]. Catal Sci Technol,2020,10(8):2473−2483. doi: 10.1039/C9CY02384D
    [33]
    KIM H J, JANG M G, SHIN D, HAN J W. Design of ceria catalysts for low-temperature CO oxidation[J]. ChemCatChem,2020,12(1):11−26.
    [34]
    RODRIGUEZ J A, WANG X, LIU G, HANSONA J C, HRBEK J, PEDEN C H F, IGLESIAS-JUEZ A, FERNANDEZ-GARCIA M. Physical and chemical properties of Ce1−xZrxO2 nanoparticles and Ce1−xZrxO2(111) surfaces: synchrotron-based studies[J]. J Mol Catal A: Chem,2005,228(1/2):11−19. doi: 10.1016/j.molcata.2004.09.069
    [35]
    FUKUHARA C, HAYAKAWA K, SUZUKI Y, KAWASAKI W, WATANABE R. A novel nickel-based structured catalyst for CO2 methanation: A honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources[J]. Appl Catal A: Gen,2017,532:12−18. doi: 10.1016/j.apcata.2016.11.036
    [36]
    HUANG X, SUN H, WANG L, LIU Y, FAN K, CAO Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ,2009,90(1/2):224−232. doi: 10.1016/j.apcatb.2009.03.015
    [37]
    LI J, TA N, LI Y, SHEN W. Morphology effect of nano-scale CeO2 in heterogeneous catalytic reactions[J]. Chin J Catal,2008,29(9):823−830.
    [38]
    LIN Y, WU Z, WEN J, POEPPELMEIER K R, MARKS L D. Imaging the atomic surface structures of CeO2 nanoparticles[J]. Nano Lett,2014,14(1):191−196. doi: 10.1021/nl403713b
    [39]
    CABALLERO A, HOLGADO J P, GONZALEZ-DELACRUZ V M. In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: Hydrogen-induced burial and dig out of metallic nickel[J]. Chem Commun,2010,46(7):1097−1106. doi: 10.1039/B920803H
    [40]
    LAASSIRI S, ZEINALIPOUR-YAZDI C D, CATLOW C R A. The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping[J]. Appl Catal B: Environ,2018,223:60−69. doi: 10.1016/j.apcatb.2017.04.073
    [41]
    WEI Y, ZHANG Y, ZHANG P, XIONG J, MEI X, YU Q, ZHAO Z, LIU J. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts[J]. Environ Sci Technol,2020,54(3):2002−2011. doi: 10.1021/acs.est.9b07013
    [42]
    ZHANG X, YOU R, LI D, CAO T, HUANG W. Reaction sensitivity of ceria morphology effect on Ni/CeO2 catalysis in propane oxidation reactions[J]. ACS Appl Mater Interfaces,2017,9(41):35897−35907. doi: 10.1021/acsami.7b11536
    [43]
    SHAPOVALOV V, METIU H. Catalysis by doped oxides: CO oxidation by AuxCe1−xO2[J]. J Catal,2007,245(1):205−214. doi: 10.1016/j.jcat.2006.10.009
    [44]
    ABDULLAH B, GHANI N A A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod,2017,162:170−185. doi: 10.1016/j.jclepro.2017.05.176
    [45]
    LONG Y, LI K, GU Z, ZHU X, WEI Y, LU C, LIN S, YANG K, CHENG X, TIAN D. Ce-Fe-Zr-O/MgO coated monolithic oxygen carriers for chemical looping reforming of methane to co-produce syngas and H2[J]. Chem Eng J,2020,388:13.
    [46]
    NAJERA M, SOLUNKE R, GARDNER T, VESER G. Carbon capture and utilization via chemical looping dry reforming[J]. Chem Eng Res Des,2011,89(9):1533−1543. doi: 10.1016/j.cherd.2010.12.017
    [47]
    CHEIN R, HSU W. Thermodynamic analysis of syngas production via chemical looping dry reforming of methane[J]. Energy,2019,180:535−547. doi: 10.1016/j.energy.2019.05.083
    [48]
    WANG Y, LIU H, XU B. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction[J]. J Mol Catal A: Chem,2009,299(1/2):44−52. doi: 10.1016/j.molcata.2008.09.025
    [49]
    WU Z, LI M, OVERBURY S H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J]. J Catal,2012,285(1):61−73. doi: 10.1016/j.jcat.2011.09.011
    [50]
    LIU L, YAO Z, DENG Y, Gao F, LIU B, DONG L. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem,2011,3(6):978−989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (528) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return