Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HAI Xue-qing, TAN Jing-jing, HE Jing, YANG Xin-ling, NA Yi-fei, WANG Yong-zhao, ZHAO Yong-xiang. Hydrogenation of furfural to 1,5-pentanediol over CuCo bimetallic catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 959-969. doi: 10.1016/S1872-5813(23)60334-2
Citation: HAI Xue-qing, TAN Jing-jing, HE Jing, YANG Xin-ling, NA Yi-fei, WANG Yong-zhao, ZHAO Yong-xiang. Hydrogenation of furfural to 1,5-pentanediol over CuCo bimetallic catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 959-969. doi: 10.1016/S1872-5813(23)60334-2

Hydrogenation of furfural to 1,5-pentanediol over CuCo bimetallic catalysts

doi: 10.1016/S1872-5813(23)60334-2
Funds:  The project was supported by the National Youth Natural Science Foundation of China (2005182, U1710221) and Science and technology innovation projects in colleges and universities in Shanxi Province (2020L0012)
  • Received Date: 2022-10-17
  • Accepted Date: 2022-12-26
  • Rev Recd Date: 2022-12-11
  • Available Online: 2023-01-10
  • Publish Date: 2023-07-01
  • A series of CuxCo3xAl hydrotalcite-like catalysts with different Cu/Co molar ratios were synthesized by the urea homogeneous precipitation method and used for the direct hydrogenation–hydrogenolysis of furfural to 1,5-pentanediol. The results showed that the Cu/Co molar ratio of the catalyst had a significant effect on its textural properties and catalytic performance. The catalyst exhibited excellent catalytic performance when the molar ratio of Cu/Co was 1∶29 (Cu0.1Co2.9Al), and the conversion of furfural was 100% together with 51.1% yield of pentanediol among which the yield of 1,5-pentanediol was 41.1%, under the reaction condition of 140oC, 4 MPa H2 for 6 h. Extensive characterization techniques, including temperature-programmed reduction (H2-TPR), temperature-programmed desorption (H2-TPD), X-Ray photoelectron spectroscopy (XPS) and Raman confirmed that the excellent catalytic activity of Cu0.1Co2.9Al catalyst was attributed to the highest content of Cu0 and CoOx on its surface, and a synergistic catalytic effect was present between them. Typically, Cu0 was used to adsorb and activate H2, and CoOx with much oxygen vacancies promoted the adsorption and activation of C=O groups in furfural molecules, leading to the quick conversion of furfural to furfuryl alcohol. In addition, the oxygen vacancies anchored the –OH in the intermediate furfuryl alcohol to produce a C2-terminal oblique adsorption on the catalyst surface. Then it promoted the hydrogenation of C2=C3 with the weakening and cleavage of C2–O1 bond, and enhanced the selectivity of 1,5-pentanediol.
  • loading
  • [1]
    MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chem Rev,2018,118(2):505−613. doi: 10.1021/acs.chemrev.7b00395
    [2]
    TESTA M L, TUMMINO M L. Lignocellulose biomass as a multifunctional tool for sustainable catalysis and chemicals: An overview[J]. Catalysts,2021,11(1):125. doi: 10.3390/catal11010125
    [3]
    PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review[J]. Renewable Sustainable Energy Rev,2011,15(3):1513−1524. doi: 10.1016/j.rser.2010.11.037
    [4]
    IRIONDO A, AGIRRE I, VIAR N, REQUIES J. Value-added biochemicals commodities from catalytic conversion of biomass derived furan-compounds[J]. Catalysts,2020,10(8):895. doi: 10.3390/catal10080895
    [5]
    GINEY T, KANTAR K. Biomass energy consumption and sustainable development[J]. Int J Sust Dev World,2020,27(8):762−767. doi: 10.1080/13504509.2020.1753124
    [6]
    BENDER T A, DABROWSKI J A, GAGNÉ M R. Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass[J]. Nat Rev Chem,2018,2(5):35−46. doi: 10.1038/s41570-018-0005-y
    [7]
    ZHOU Z, LIU D, ZHAO X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose[J]. Renewable Sustainable Energy Rev,2021,146:111169. doi: 10.1016/j.rser.2021.111169
    [8]
    KHENTHONG P, YIMSUKANAN C, NARKKUN T, SRIFA A, WITOON T, PONGCHAIPHOL S, FAUNGNAWAKIJ K. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass[J]. Biomass Bioenergy,2021,148:106033. doi: 10.1016/j.biombioe.2021.106033
    [9]
    CAI C M, ZHANG T, KUMAR R, WYMAN C E. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. J Chem Technol Biotechnol,2014,89(1):2−10. doi: 10.1002/jctb.4168
    [10]
    LI X, JIA P, WANG T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS Catal,2016,6(11):7621−7640. doi: 10.1021/acscatal.6b01838
    [11]
    FAERGEMANN J, WAHLSTRAND B, HEDNER T, JOHNSSON J, NEUBERT R H. Pentane-1, 5-diol as a percutaneous absorption enhancer[J]. Arch Dermatol Res,2005,297(6):261−265. doi: 10.1007/s00403-005-0610-8
    [12]
    HUANG K, BRENTZEL Z J, BARNETT K J, DUMESIC J A, HUBER G W, MARAVELIAS C T. Conversion of furfural to 1, 5-pentanediol: Process synthesis and analysis[J]. ACS Sustainable Chem Eng,2017,5(6):4699−4706. doi: 10.1021/acssuschemeng.7b00059
    [13]
    XU W, WANG H, LIU X, REN J, WANG Y, LU G. Direct catalytic conversion of furfural to 1, 5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chem Commun,2011,47(13):3924−3926. doi: 10.1039/c0cc05775d
    [14]
    FU X M, REN X Q, SHEN J, JIANG Y, WANG Y, OROOJI Y, XU W, LIANG J. Synergistic catalytic hydrogenation of furfural to 1, 2-pentanediol and 1, 5-pentanediol with LDO derived from CuMgAl hydrotalcite[J]. Mol Catal,2021,499:111298. doi: 10.1016/j.mcat.2020.111298
    [15]
    SHAO Y, WANG J, SUN K, GAO G, LI C, ZHANG L, XU L, HU G, HU X. Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: Understanding the synergy between Ni sites and Ni-Fe alloy[J]. Renew Energ,2021,170:1114−1128. doi: 10.1016/j.renene.2021.02.056
    [16]
    卫彩云, 谭静静, 夏晓丽, 赵永祥. 焙烧温度对 CuMgAl 催化剂催化糠醇加氢制戊二醇的影响[J]. 化工学报,2019,70(4):1409−1419.

    WEI Cai-yun, TAN Jing-jing, XIA Xiao-li, ZHAO Yong-xiang. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol[J]. CHESC J,2019,70(4):1409−1419.
    [17]
    MA C Y, MU Z, Li J J, JIN Y G, CHENG J, LU G Q, HAO Z P, QIAO S Z. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene[J]. J Am Chem Soc,2010,132(8):2608−2613. doi: 10.1021/ja906274t
    [18]
    ZHANG J, GAO Z, WANG S, WANG G, GAO X, ZHANG B, XING S, ZHAO S, QIN Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction[J]. Nat Commun,2019,10(1):1−8. doi: 10.1038/s41467-018-07882-8
    [19]
    GAO X, ZHU S, DONG M, WANG J, FAN W. Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone[J]. J Catal,2020,389:60−70. doi: 10.1016/j.jcat.2020.05.012
    [20]
    SULMONETTI T P, HU B, LEE S, AGRAWAL P K, JONES C W. Reduced Cu-Co-Al mixed metal oxides for the ring-opening of furfuryl alcohol to produce renewable diols[J]. ACS Sustainable Chem Eng,2017,5(10):8959−8969. doi: 10.1021/acssuschemeng.7b01769
    [21]
    LI S, WANG H, LI W, WU X, TANG W, CHEN Y. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor[J]. Appl Catal B: Environ,2015,166:260−269.
    [22]
    KANNAN S, RIVES V, KNöZINGER H J. High-temperature transformations of Cu-rich hydrotalcites[J]. Solid State Chem,2004,177(1):319−331. doi: 10.1016/j.jssc.2003.08.023
    [23]
    WU J, GAO G, SUN P, LONG X, LI F. Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters[J]. ACS Catal,2017,7(11):7890−7901. doi: 10.1021/acscatal.7b02837
    [24]
    GöBEL C, SCHMIDT S, FROESE C, FU Q, CHEN Y T, PAN Q, MIHLER M. Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure[J]. J Catal,2020,383:33−41. doi: 10.1016/j.jcat.2020.01.004
    [25]
    BENHITI R, AIT ICHOU A, ZAGHLOUL A, AZIAM R, CARJA G, ZERBET M, SUNAN F, CHIBAN M. Synthesis, characterization, and comparative study of MgAl-LDHs prepared by standard coprecipitation and urea hydrolysis methods for phosphate removal[J]. Environ Sci Pollut R,2020,27(36):45767−45774. doi: 10.1007/s11356-020-10444-5
    [26]
    TITULAER M K, JANSEN J B H, GEUS J W. The quantity of reduced nickel in synthetic takovite: Effects of preparation conditions and calcination temperature[J]. Clays clay miner,1994,42(3):249−258. doi: 10.1346/CCMN.1994.0420303
    [27]
    JITIANU M, JITIANU A, ZAHARESCU M, CRISAN D, MARCHIDAN R. IR structural evidence of hydrotalcites derived oxidic forms[J]. Vib Spectrosc,2000,22(1/2):75−86. doi: 10.1016/S0924-2031(99)00067-3
    [28]
    RIVES V, DUBEY A, KANNAN S. Synthesis, characterization and catalytic hydroxylation of phenol over CuCoAl ternary hydrotalcites[J]. Phys Chem Chem Phys,2001,3(21):4826−4836. doi: 10.1039/b103656b
    [29]
    YANG X, CHEN H, MENG Q, ZHENG H, ZHU Y, LI Y W. Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation[J]. Catal Sci Technol,2017,7(23):5625−5634. doi: 10.1039/C7CY01284E
    [30]
    THAO N T. Catalytic oxidation of styrene over Cu-doped hydrotalcites[J]. Chem Eng J,2015,279:840−850. doi: 10.1016/j.cej.2015.05.090
    [31]
    CHEN L F, GUO P J, QIAO M H, YAN S R, LI H X, SHEN W, XU H L, FAN K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal,2008,257(1):172−180. doi: 10.1016/j.jcat.2008.04.021
    [32]
    WANG J, LI K, ZHANG L, GE B, LIU Y, YANG T, LIU D. Temperature-depended Cu0.92Co2.08O4 modified activated carbon air cathode improves power output in microbial fuel cell[J]. Int J Hydrogen Energy,2017,42(5):3316−3324. doi: 10.1016/j.ijhydene.2016.09.104
    [33]
    DOHADE M G, DHEPE P L. Efficient hydrogenation of concentrated aqueous furfural solutions into furfuryl alcohol under ambient conditions in presence of PtCo bimetallic catalyst[J]. Green Chem,2017,19(4):1144−1154. doi: 10.1039/C6GC03143A
    [34]
    DAI Q, ZHANG Z, YAN J, WU J, JOHNSON G, SUN W, WANG X, ZHANG S, ZHAN W. Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane[J]. Environ Sci Technol,2018,52(22):13430−13437. doi: 10.1021/acs.est.8b05002
    [35]
    HU Z, WANG Z, GUO Y, WANG L, GUO Y, ZHANG J, ZHAN W. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature[J]. Environ Sci Technol,2018,52(16):9531−9541. doi: 10.1021/acs.est.8b03448
    [36]
    SUN K, GAO X, BAI Y, TAN M, YANG G, TAN Y. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol,2018,8(15):3936−3947. doi: 10.1039/C8CY01074A
    [37]
    CARRILLO A M, CARRIAZO J G. Cu and Co oxides supported on halloysite for the total oxidation of toluene[J]. Appl Catal B: Environ,2015,164:443−452. doi: 10.1016/j.apcatb.2014.09.027
    [38]
    VELU S, SUZUKI K, HASHIMOTO S, SATOH N, OHASHI F, TOMURA S. The effect of cobalt on the structural properties and reducibility of CuCoZnAl layered double hydroxides and their thermally derived mixed oxides[J]. J Mater Chem,2001,11(8):2049−2060. doi: 10.1039/b101599k
    [39]
    SUN L, DENG Q, LI Y, MI H, WANG S, DENG L, REN X, ZHANG P. CoO-Co3O4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries[J]. Electrochim Acta,2017,241:252−260. doi: 10.1016/j.electacta.2017.04.148
    [40]
    SAVEREIDE L, NAUERT S L, ROBERTS C A, NOTESTEIN J M. The effect of support morphology on CoOx/CeO2 catalysts for the reduction of NO by CO[J]. J Catal,2018,366:150−158. doi: 10.1016/j.jcat.2018.08.005
    [41]
    SUN X, YANG X, XIANG H, MI H, ZHANG P, REN X, LI Y, LI X. Nitrogen-doped CoOx/carbon nanotubes derived by plasma-enhanced atomic layer deposition: Efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Electrochim Acta,2019,296:964−971. doi: 10.1016/j.electacta.2018.11.084
    [42]
    HADJIEV V G, ILIEV M N, VERGILOV I V. The Raman spectra of Co3O4[J]. Phys Solid State,1988,21(7):L199. doi: 10.1088/0022-3719/21/7/007
    [43]
    WANG Y, ARANDIYAN H, CHEN X, ZHAO T, BO X, SU Z, ZHAO C. Microwave-induced plasma synthesis of defect-rich, highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis[J]. J Phys Chem C,2020,124(18):9971−9978. doi: 10.1021/acs.jpcc.0c01135
    [44]
    MUñOZ V, ZOTIN F M Z, PALACIO L A. Copper–aluminum hydrotalcite type precursors for NOx abatement[J]. Catal Today,2015,250:173−179. doi: 10.1016/j.cattod.2014.06.004
    [45]
    DASIREDDY V D B C, NEJA S Š, BLAŽ L. Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol[J]. J CO2 Util,2018,28:189−199. doi: 10.1016/j.jcou.2018.09.002
    [46]
    PRINS R. Hydrogen spillover. Facts and fiction[J]. Chem Rev,2012,112(5):2714−2738. doi: 10.1021/cr200346z
    [47]
    王峰云, 黄家生, 徐奕德, 戴丽珍, 陆大勋, 彭少逸. 不同方法制备的 Cu-Co 低碳醇含成催化剂的比较研究 Ⅱ. H2-TPD, CO-TPD 及 CO/H2 TPSR 的研究[J]. 催化学报,1994,15(6):426−431.

    WANG Feng-yun, HUANG Jia-sheng, XUN Yi-de, DAI Li-zhen, LUN Da-xun, PENG Shao-yi. Comparative study of Cu-Co low carbon alcohol as catalyst prepared by different methods II. Research on H2-TPD, CO-TPD and CO/H2 TPSR[J]. Chin J Catal,1994,15(6):426−431.
    [48]
    WANG Y, SHEN Y, ZHAO Y, LV J, WANG S, MA X. Insight into the balancing effect of active Cu species for hydrogenation of carbon–oxygen bonds[J]. ACS Catal,2015,5(10):6200−6208. doi: 10.1021/acscatal.5b01678
    [49]
    TAN J, SU Y, HAI X, HUANG L, CUI J, ZHU Y, WANG Y, ZHAO Y. Conversion of furfuryl alcohol to 1, 5-pentanediol over CuCoAl nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides[J]. Mol Catal,2022,526:112391. doi: 10.1016/j.mcat.2022.112391
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (924) PDF downloads(210) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return