Volume 51 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
CHEN De-quan, WANG An, BAO Gui-rong, GAO Peng, LUO Jia, JI Xue-wu, DENG Wen-yao, LIU Li. Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1273-1281. doi: 10.1016/S1872-5813(23)60340-8
Citation: CHEN De-quan, WANG An, BAO Gui-rong, GAO Peng, LUO Jia, JI Xue-wu, DENG Wen-yao, LIU Li. Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1273-1281. doi: 10.1016/S1872-5813(23)60340-8

Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose

doi: 10.1016/S1872-5813(23)60340-8
Funds:  The project was supported by the National Natural Science Foundation of China (51966008)
  • Received Date: 2022-11-13
  • Accepted Date: 2023-01-13
  • Rev Recd Date: 2023-01-11
  • Available Online: 2023-02-27
  • Publish Date: 2023-09-30
  • With carbon dots (CDs) as the reducing agent and support, a PdAg/CDs composite catalyst was prepared by simple light reduction method. The results of XRD, TEM, FT-IR and XPS characterization indicate that the PdAg/CDs composite has an average particle size of about 10.45 nm, where Pd and Ag exist on the surface of CDs mainly in the alloy form of zero valence. The catalytic performance of the PdAg/CDs composite was evaluated in the hydrogenolysis of glucose in water. The results illustrate that the PdAg/CDs composite catalyst is highly active in the glucose hydrogenolysis; after reaction for 3 h under 140 °C, 4 MPa of initial H2 pressure, 100 mg of glucose and 25 mg of catalyst, the conversion of glucose is 68.85% and the yield of acetol reaches 8.36%.
  • loading
  • [1]
    TAKASHI B, PAVEL R, EVA D, KEQIN C, ANJALI C, BILL L, IGOR C. Dissociation of biomolecules by an intense low-energy electron beam in a high sensitivity time-of-flight mass spectrometer[J]. J Am Soc Mass Spectr,2021,32(8):1964−1975. doi: 10.1021/jasms.0c00425
    [2]
    田宜水, 单明, 孔庚, 麻林巍, 邵思. 我国生物质经济发展战略研究[J]. 中国工程科学,2021,23(1):133−140.

    TIAN Yi-shui, SHAN Ming, KONG Geng, MA Lin-wei, SHAO Si. Development strategy of biomass economy in China[J]. Strat Stud CAE,2021,23(1):133−140.
    [3]
    徐英钊, 漆新华, 郭海心, 李陆杨. 离子液体中葡萄糖催化转化为5-羟甲基糠醛[J]. 化工进展,2011,30(3):552−556. doi: 10.16085/j.issn.1000-6613.2011.03.013

    XU Ying-zhao, QI Xin-hua, GUO Hai-xin, LI Lu-yang. Preparation of 5-hydroxymethylfurfural from glucose in ionic liquid[J]. Chem Ind Eng Prog,2011,30(3):552−556. doi: 10.16085/j.issn.1000-6613.2011.03.013
    [4]
    SATO S, SAKAI D, SATO F, YAMADA Y. Vapor-phase dehydration of glycerol into hydroxyacetone over silver catalyst[J]. Chem Lett,2012,41(9):965−966. doi: 10.1246/cl.2012.965
    [5]
    PILAR H, JOSEP-VICENT S, FRANCESCO M, R A A, PABLO D D M. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones[J]. Accounts Chem Res,2010,43(2):288−299. doi: 10.1021/ar900196n
    [6]
    MOHAMAD M H, AWANG R, YUNUS W M Z W. A review of acetol: Application and production[J]. Am J Appl Sci,2011,8(11):1135−1139. doi: 10.3844/ajassp.2011.1135.1139
    [7]
    DASARI M A, KIATSIMKUL P-P, SUTTERLIN W R, SUPPES G J. Low-pressure hydrogenolysis of glycerol to propylene glycol[J]. Appl Catal A: Gen,2004,281(1):225−231.
    [8]
    ZHU H, YI X, LIU Y, HU H, WOOD T K, ZHANG X. Production of acetol from glycerol using engineered Escherichia coli[J]. Bioresour Technol,2013,149:238−243. doi: 10.1016/j.biortech.2013.09.062
    [9]
    SOUZA P M D, SILVESTER L, SILVA A G M D, FERNANDES C G, RODRIGUES T S, PAUL S, CAMARGO P H C, WOJCIESZAK R. Exploiting the synergetic behavior of PtPd bimetallic catalysts in the selective hydrogenation of glucose and furfural[J]. Catalysts,2019,9(2):1−14.
    [10]
    ROMERO A, NIETO-MARQUEZ A, ALONSO E. Bimetallic Ru: Ni/MCM-48 catalysts for the effective hydrogenation of d -glucose into sorbitol[J]. Appl Catal A: Gen,2017,529(2017):49−59.
    [11]
    ZADA B, YAN L, FU Y. Effective conversion of cellobiose and glucose to sorbitol using non-noble bimetallic NiCo/HZSM-5 catalyst[J]. Sci China Chem,2018,61(9):1167−1174. doi: 10.1007/s11426-018-9321-0
    [12]
    ARUNIMA K A, SREEJITH S, BANU M. Fabrication of mesoporous carbon supported Ni-Mo catalysts for the enhanced conversion of glucose to ethylene glycol[J]. New J Chem,2020,44(37):15958−15965. doi: 10.1039/D0NJ03196H
    [13]
    CHU D, LUO Z, ZHAO C. Selective production of acetol or methyl lactate from cellulose over RuSn catalysts[J]. J Energy Chem,2022,73(10):607−614.
    [14]
    MA L L, WANG H Y, ZHU C H, LIU Q Y, TAN J, WANG C G, LIANG Z. Selective conversion of cellulose to hydroxyacetone and 1-Hydroxy-2-Butanone using Sn-Ni bimetal catalysts[J]. ChemSusChem,2019,12(10):2154−2160. doi: 10.1002/cssc.201900172
    [15]
    LIU X H, LIU X D, XU G Y, ZHANG Y, WANG C, LU Q, MA L L. Highly efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on nanosilica and the mechanism study[J]. Green Chem,2019,21(20):5647−5656. doi: 10.1039/C9GC02449B
    [16]
    GLYZDOVA D V A, AFONASENKO T N A, KHRAMOV E V B, LEONT’EVA N N A, TRENIKHIN M V A, KREMNEVA A M C, SHLYAPIN D A. Effect of pretreatment with hydrogen on the structure and properties of carbon-supported Pd-Ag-nanoalloys for ethylene production by acetylene hydrogenation[J]. Mol Catal,2021,511:111717.
    [17]
    AICH P, WEI H J, BASAN B, KROPF A J, SCHWEITZER N M, MARSHALL C L, MILLER J T, MEYER R. Single-atom alloy Pd-Ag catalyst for selective hydrogenation of acrolein[J]. J Phys Chem C,2015,119(32):18140−18148. doi: 10.1021/acs.jpcc.5b01357
    [18]
    王宁, 王新旭, 杨海芬, 宋文静, 孙体健. 基于氮磷共掺杂碳点的荧光探针检测汞离子[J]. 化学研究与应用,2019,31(3):440−448.

    WANG Ning, WANG Xin-xv, YANG Hai-fen, SONG Wen-jing, SUN Ti-jian. A fluorescent probe for determination of mercury ion based on phosphorus and nitrogen co-doped carbon dot[J]. Chem Res Appl,2019,31(3):440−448.
    [19]
    SINGH R P, SHARMA G, SONAL, SINGH S, PATNE S C U, PANDEY B L, KOCH B, MUTHU M S. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery[J]. Mat Sci Eng C,2016,67:313−325. doi: 10.1016/j.msec.2016.05.013
    [20]
    ZHAO D, GAO X, WU C, XIE R, FENG S, CHEN C. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(VI)[J]. Appl Surf Sci,2016,384:1−9. doi: 10.1016/j.apsusc.2016.05.022
    [21]
    ZHAO Y, LI C, FAN X, WANG J, YUAN G, SONG X, CHEN J, LI Z. Study on the separation performance of the multi-channel reduced graphene oxide membranes[J]. Appl Surf Sci,2016,384:279−286. doi: 10.1016/j.apsusc.2016.05.036
    [22]
    黎剑辉, 庄少玲. 碳点的制备研究进展[J]. 稀有金属材料与工程,2019,48(10):3401−3416.

    LI Jian-hui, ZHUANG Shao-ling. Research progress of carbon dots preparation[J]. Rare Metal Mater Eng,2019,48(10):3401−3416.
    [23]
    SHEN L M, CHEN M L, HU L L, CHEN X W, WANG J H. Growth and stabilization of silver nanoparticles on carbon dots and sensing application[J]. Langmuir,2013,29(52):16135−16140. doi: 10.1021/la404270w
    [24]
    HAN S, ZHANG H, XIE Y J, LIU L L, SHAN C F, LI X K, LIU W S, TANG Y. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent[J]. Appl Surf Sci,2015,328:368−373. doi: 10.1016/j.apsusc.2014.12.074
    [25]
    TIAN L, GHOSH D, CHEN W. Nanosized carbon particles from natural gas soot[J]. Chem Mater,2009,21(13):2803−2809. doi: 10.1021/cm900709w
    [26]
    刘源. 碳点负载Ru基金属复合材料的构筑及其电催化析氢性能研究[D]. 郑州: 郑州大学, 2020.

    LIU Yuan. Construction of carbon dots loaded ruthenium-based metal composite materials and their application in hydrogen evolution reaction[D]. Zhengzhou: Zhengzhou University, 2020.
    [27]
    NAMASIVAYAM D, KING-CHUEN L. Photochemically synthesized ruthenium nanoparticle-decorated carbon-dot nanochains: An efficient catalyst for synergistic redox reactions[J]. ACS Appl Mater Inter,2020,12(12):13759−13769. doi: 10.1021/acsami.9b20477
    [28]
    ZHANG J, CHEN Y, TAN J, SANG H T, ZHANG L Q, YUE D M. The synthesis of rhodium/carbon dots nanoparticles and its hydrogenation application[J]. Appl Surf Sci,2017,396(1):1138−1145.
    [29]
    刘源, 李卫东, 吴捍, 卢思宇. 碳点增强的Ru纳米颗粒复合材料用于碱性条件下高效电解水析氢(英文)[J]. 物理化学学报,2021,37(7):169−180.

    LIU Yuan, LI Wei-dong, WU Han, LU Si-yu. Carbon dots enhance ruthenium nanoparticles for efficient hydrogen production in alkaline[J]. Acta Phys-chim Sin,2021,37(7):169−180.
    [30]
    DEY D, BHATTACHARYA T, MAJUMDAR B, MANDANI S, SHARMA B, SARMA T K. Carbon dot reduced palladium nanoparticles as active catalysts for carbon-carbon bond formation[J]. Dalton Trans,2013,42(38):13821−13825. doi: 10.1039/c3dt51234g
    [31]
    GLYZDOVA D V, AFONASENKO T N, KHRAMOV E V, LEONT'EVA N N, PROSVIRIN I P, BUKHTIYAROV A V, SHLYAPIN D A. Liquid-phase acetylene hydrogenation over Ag-modified Pd/sibunit catalysts: Effect of Pd to Ag molar ratio[J]. Appl Catal A: Gen, 2020, 600: 117627.
    [32]
    王都留, 马蓉, 杨建东, 燕翔, 吴生平, 张少飞. 温敏型碳点的新法合成[J]. 四川大学学报(自然科学版),2018,55(6):1287−1291.

    WANG Du-liu, MA Rong, YANG Jian-dong, YAN Xiang, WU Sheng-ping, ZHANG Shao-fei. New microwave synthesis of temperature sensitive carbon dots[J]. J Sichuan Univ (Nat Sci Ed),2018,55(6):1287−1291.
    [33]
    CHUNTANAPUM A, MATSUMURA Y. Char formation mechanism in supercritical water gasification process: A study of model compounds[J]. Ind Eng Chem Res,2010,49(9):4055−4062. doi: 10.1021/ie901346h
    [34]
    WANG T, NOLTE M W, SHANKS B H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical[J]. Green Chem,2014,16(2):548−572. doi: 10.1039/C3GC41365A
    [35]
    刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展,2021,33(11):2128−2137.

    LIU Yi-qiang, QIU Yi-mei, TANG Xing, SUN Yong, ZENG Xian-hai, LIN Lu. Glucose isomerization into fructose by chemocatalytic route[J]. Prog Chem,2021,33(11):2128−2137.
    [36]
    李思婵, 邓玉龙, 王海永, 王晨光, 马隆龙, 刘琪英. Sn-Fe@C催化纤维素氢解制备丙酮醇和乳酸[J]. 燃料化学学报,2022,50(3):314−325. doi: 10.1016/S1872-5813(21)60153-6

    LI Si-chan, DENG Yu-long, WANG Hai-yong, WANG Chen-guang, MA Long-long, LIU Qi-ying. Production of acetol and lactic acid from cellulose hydrogenolysis over Sn-Fe@C catalysts[J]. J Fuel Chem Technol,2022,50(3):314−325. doi: 10.1016/S1872-5813(21)60153-6
    [37]
    狄艳冰, 肖子辉, 邸鑫, 李闯, 梁长海. 双金属NiCu/MgO催化剂上葡萄糖氢解制备高附加值C2-C4化学品(英文)[J]. 分子催化,2016,30(4):324−337. doi: 10.16084/j.cnki.issn1001-3555.2016.04.011

    DI Yan-bing, XIAO Zi-hui, DI Xin, LI Chuang, LIANG Chang-hai. Hydrogenolysis of glucose to value-added C2-C4 compounds over bimetallic NiCu/MgO catalysts[J]. J Mol Catal (China),2016,30(4):324−337. doi: 10.16084/j.cnki.issn1001-3555.2016.04.011
    [38]
    ALLISON E G, BOND G C. The structure and catalytic properties of palladium-silver and palladium-gold alloys[J]. Catal Rev,1972,7(2):233−289. doi: 10.1080/01614947208062259
    [39]
    RASSOLOV A V A, MARKOV P V A, BRAGINA G O A, BAEVA G N A, KRIVORUCHENKO D S A, MASHKOVSKII I S A, YAKUSHEV I A B, VARGAFTIK M N B, STAKHEEV A Y A. Formation of Pd-Ag nanoparticles in supported catalysts based on the heterobimetallic complex PdAg2(OAc)4(HOAc)4[J]. Kinet Catal ,2016,57(6):859−865. doi: 10.1134/S0023158416060112
    [40]
    MEI D, NEUROCK M, SMITH C M. Hydrogenation of acetylene-ethylene mixtures over Pd and Pd-Ag alloys: First-principles-based kinetic Monte Carlo simulations[J]. J Catal,2009,268(2):181−195. doi: 10.1016/j.jcat.2009.09.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (406) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return